Xingyou Wang, Masha M Rosenberg, Youngchang Kim, Natalia Maltseva, Gregory D Cuny, Andrzej Joachimiak, Petr Kuzmič, Lizbeth Hedstrom
{"title":"Role of the Mobile Active Site Flap in IMP Dehydrogenase Inhibitor Binding.","authors":"Xingyou Wang, Masha M Rosenberg, Youngchang Kim, Natalia Maltseva, Gregory D Cuny, Andrzej Joachimiak, Petr Kuzmič, Lizbeth Hedstrom","doi":"10.1021/acsinfecdis.4c00636","DOIUrl":null,"url":null,"abstract":"<p><p>Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising antibiotic target. This enzyme catalyzes the NAD-dependent oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP), which is the rate-limiting step in guanine nucleotide biosynthesis. Bacterial IMPDH-specific inhibitors have been developed that bind to the NAD<sup>+</sup> site. These inhibitors display varied affinities to different bacterial IMPDHs that are not easily rationalized by X-ray crystal structures of enzyme-inhibitor complexes. Inspection of X-ray crystal structures of 25 enzyme-inhibitor complexes, including 10 newly described, suggested that a mobile active site flap may be a structural determinant of inhibitor potency. Saturation transfer difference NMR experiments also suggested that the flap may contact the inhibitors to varying extents in different IMPDHs. Flap residue Leu413 contacted some inhibitors but was not structured in the crystal structures of other inhibitor complexes. The substitution of Leu413 with Phe or Ala in <i>Bacillus anthracis</i> IMPDH had inhibitor-selective effects, suggesting residue 413 could be a structural determinant of affinity. Curiously, the Ala substitution increased the potency of most inhibitors, even those that contacted Leu413 in the crystal structures. Presteady-state and steady-state kinetics experiments showed that the Leu413Ala substitution had comparable effects on inhibitor binding to the noncovalent E·IMP complex and the covalent intermediate E-XMP*, suggesting that the flap had similar interactions in both complexes. These results demonstrate that contacts do not necessarily indicate favorable interactions, and poorly structured mobile regions should not be discounted when assessing binding determinants.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00636","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising antibiotic target. This enzyme catalyzes the NAD-dependent oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP), which is the rate-limiting step in guanine nucleotide biosynthesis. Bacterial IMPDH-specific inhibitors have been developed that bind to the NAD+ site. These inhibitors display varied affinities to different bacterial IMPDHs that are not easily rationalized by X-ray crystal structures of enzyme-inhibitor complexes. Inspection of X-ray crystal structures of 25 enzyme-inhibitor complexes, including 10 newly described, suggested that a mobile active site flap may be a structural determinant of inhibitor potency. Saturation transfer difference NMR experiments also suggested that the flap may contact the inhibitors to varying extents in different IMPDHs. Flap residue Leu413 contacted some inhibitors but was not structured in the crystal structures of other inhibitor complexes. The substitution of Leu413 with Phe or Ala in Bacillus anthracis IMPDH had inhibitor-selective effects, suggesting residue 413 could be a structural determinant of affinity. Curiously, the Ala substitution increased the potency of most inhibitors, even those that contacted Leu413 in the crystal structures. Presteady-state and steady-state kinetics experiments showed that the Leu413Ala substitution had comparable effects on inhibitor binding to the noncovalent E·IMP complex and the covalent intermediate E-XMP*, suggesting that the flap had similar interactions in both complexes. These results demonstrate that contacts do not necessarily indicate favorable interactions, and poorly structured mobile regions should not be discounted when assessing binding determinants.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.