{"title":"Fluorine-Free Nanofiber/Network Membranes with Interconnected Tortuous Channels for High-Performance Liquid-Repellency and Breathability.","authors":"Mingle Ding, Yuan Wang, Xiaobao Gong, Mukun Luo, Xia Yin, Jianyong Yu, Shichao Zhang, Bin Ding","doi":"10.1021/acsnano.4c14213","DOIUrl":null,"url":null,"abstract":"<p><p>The excessive use of fluoride in fibrous membranes poses significant bioaccumulative threats to the environment and human health. However, most existing membranes used in protective clothing and desalination systems show high fluorine dependence and inevitable trade-offs between liquid repellency and breathability. Herein, fluorine-free bonded scaffolded nanofiber/network membranes are developed using the electro-coating-netting technique to achieve high-performance liquid-repellency and breathability. By manipulating the stretching of electrospun jets and the polarization of electrets, rough and electrostatic wetting nanofibers are obtained as scaffolds, on which long-chain alkyl precursors are coated to assemble 2D networks consisting of nanowires with diameters of ∼42 nm and bonding points. The resultant fluorine-free membranes exhibit small pore sizes of ∼460 nm, highly interconnected tortuous channels, a water contact angle of ∼138°, and elastic elongation up to 300%, thereby providing both high-performance liquid repellency (125 kPa) and vapor permeability (4206 g m<sup>-2</sup> d<sup>-1</sup>), making them effective for use in protective clothing and desalination. This work could inspire innovative design of ecofriendly nanofibrous materials for high-performance filtration and separation.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c14213","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The excessive use of fluoride in fibrous membranes poses significant bioaccumulative threats to the environment and human health. However, most existing membranes used in protective clothing and desalination systems show high fluorine dependence and inevitable trade-offs between liquid repellency and breathability. Herein, fluorine-free bonded scaffolded nanofiber/network membranes are developed using the electro-coating-netting technique to achieve high-performance liquid-repellency and breathability. By manipulating the stretching of electrospun jets and the polarization of electrets, rough and electrostatic wetting nanofibers are obtained as scaffolds, on which long-chain alkyl precursors are coated to assemble 2D networks consisting of nanowires with diameters of ∼42 nm and bonding points. The resultant fluorine-free membranes exhibit small pore sizes of ∼460 nm, highly interconnected tortuous channels, a water contact angle of ∼138°, and elastic elongation up to 300%, thereby providing both high-performance liquid repellency (125 kPa) and vapor permeability (4206 g m-2 d-1), making them effective for use in protective clothing and desalination. This work could inspire innovative design of ecofriendly nanofibrous materials for high-performance filtration and separation.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.