Evaluation of the Catalytic Effect of Metal Additives on the Performance of a Combined Battery and Electrolyzer System.

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2025-01-08 eCollection Date: 2025-01-27 DOI:10.1021/acsaem.4c02648
Elizabeth Ashton, Matthew Brenton, Jonathan G Wilson, John P Barton, Richard Wilson, Danielle Strickland, Simon A Kondrat, Nicolas Clement, John Wertz, Jibo Zhang
{"title":"Evaluation of the Catalytic Effect of Metal Additives on the Performance of a Combined Battery and Electrolyzer System.","authors":"Elizabeth Ashton, Matthew Brenton, Jonathan G Wilson, John P Barton, Richard Wilson, Danielle Strickland, Simon A Kondrat, Nicolas Clement, John Wertz, Jibo Zhang","doi":"10.1021/acsaem.4c02648","DOIUrl":null,"url":null,"abstract":"<p><p>A low-cost method of green hydrogen production via the modification of a lead acid battery has been achieved, resulting in a hydrogen flow rate of 5.3 L min<sup>-1</sup> from a 20-cell string. The electrochemical behavior and catalytic effect of various metal additives on the hydrogen evolution reaction (HER) was evaluated using cyclic voltammetry. Nickel, cobalt, antimony, manganese, and iron were investigated, with 66 ppm nickel achieving a 75% increase in hydrogen produced from a modified lead acid battery. Design of Experiments (DOE) employing a simple centroid design model to analyze the combined additive effects of nickel, cobalt, and antimony was performed to evaluate the effect on the HER. A combination of Ni:Co:Sb in the ratio 66:17:17 ppm achieved the greatest end voltage shift of the HER from -1.65 to -1.50 V; however, no increase in hydrogen yield was observed in comparison to 66 ppm of nickel when added to a full-scale cell. Gas chromatography using a thermal conductive detector and a sulfur chemiluminescence detector were used to measure the purity of hydrogen obtained from a string of 20 battery electrolyzer cells connected in series. 99% purity hydrogen gas was obtained from the battery electrolyzer cells, with H<sub>2</sub>S impurities below the limit of detection (0.221 ppm).</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 2","pages":"1112-1125"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaem.4c02648","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A low-cost method of green hydrogen production via the modification of a lead acid battery has been achieved, resulting in a hydrogen flow rate of 5.3 L min-1 from a 20-cell string. The electrochemical behavior and catalytic effect of various metal additives on the hydrogen evolution reaction (HER) was evaluated using cyclic voltammetry. Nickel, cobalt, antimony, manganese, and iron were investigated, with 66 ppm nickel achieving a 75% increase in hydrogen produced from a modified lead acid battery. Design of Experiments (DOE) employing a simple centroid design model to analyze the combined additive effects of nickel, cobalt, and antimony was performed to evaluate the effect on the HER. A combination of Ni:Co:Sb in the ratio 66:17:17 ppm achieved the greatest end voltage shift of the HER from -1.65 to -1.50 V; however, no increase in hydrogen yield was observed in comparison to 66 ppm of nickel when added to a full-scale cell. Gas chromatography using a thermal conductive detector and a sulfur chemiluminescence detector were used to measure the purity of hydrogen obtained from a string of 20 battery electrolyzer cells connected in series. 99% purity hydrogen gas was obtained from the battery electrolyzer cells, with H2S impurities below the limit of detection (0.221 ppm).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Investigating the Effects of Copper Impurity Deposition on the Structure and Electrochemical Behavior of Hydrogen Evolution Electrocatalyst Materials. Identifying the Activated Carbon Electrode Aging Pathways in Lithium-Ion Hybrid Capacitors. Enhancing Thermogalvanic Efficiency through Electrostatic Interaction in Cationic Hydrogels. Evaluation of the Catalytic Effect of Metal Additives on the Performance of a Combined Battery and Electrolyzer System. Reinforcing Bulk Heterojunction Morphology through Side Chain-Engineered Pyrrolopyrrole-1,3-dione Polymeric Donors for Nonfullerene Organic Solar Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1