A physical optics formulation of Bloch waves and its application to 4D STEM, 3D ED and inelastic scattering simulations.

IF 1.9 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Acta Crystallographica Section A: Foundations and Advances Pub Date : 2025-03-01 DOI:10.1107/S2053273325000142
Budhika G Mendis
{"title":"A physical optics formulation of Bloch waves and its application to 4D STEM, 3D ED and inelastic scattering simulations.","authors":"Budhika G Mendis","doi":"10.1107/S2053273325000142","DOIUrl":null,"url":null,"abstract":"<p><p>Bloch waves are often used in dynamical diffraction calculations, such as simulating electron diffraction intensities for crystal structure refinement. However, this approach relies on matrix diagonalization and is therefore computationally expensive for large unit cell crystals. Here Bloch wave theory is re-formulated using the physical optics concepts underpinning the multislice method. In particular, the multislice phase grating and propagator functions are expressed in matrix form using elements of the Bloch wave structure matrix. The specimen is divided into thin slices, and the evolution of the electron wavefunction through the specimen calculated using the Bloch phase grating and propagator matrices. By decoupling specimen scattering from free space propagation of the electron beam, many computationally demanding simulations, such as 4D STEM imaging modes, 3D ED precession and rotation electron diffraction, phonon and plasmon inelastic scattering, are considerably simplified. The computational cost scales as {\\cal O}({N^2} ) per slice, compared with {\\cal O}({N^3} ) for a standard Bloch wave calculation, where N is the number of diffracted beams. For perfect crystals the performance can at times be better than multislice, since only the important Bragg reflections in the otherwise sparse diffraction plane are calculated. The physical optics formulation of Bloch waves is therefore an important step towards more routine dynamical diffraction simulation of large data sets.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273325000142","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bloch waves are often used in dynamical diffraction calculations, such as simulating electron diffraction intensities for crystal structure refinement. However, this approach relies on matrix diagonalization and is therefore computationally expensive for large unit cell crystals. Here Bloch wave theory is re-formulated using the physical optics concepts underpinning the multislice method. In particular, the multislice phase grating and propagator functions are expressed in matrix form using elements of the Bloch wave structure matrix. The specimen is divided into thin slices, and the evolution of the electron wavefunction through the specimen calculated using the Bloch phase grating and propagator matrices. By decoupling specimen scattering from free space propagation of the electron beam, many computationally demanding simulations, such as 4D STEM imaging modes, 3D ED precession and rotation electron diffraction, phonon and plasmon inelastic scattering, are considerably simplified. The computational cost scales as {\cal O}({N^2} ) per slice, compared with {\cal O}({N^3} ) for a standard Bloch wave calculation, where N is the number of diffracted beams. For perfect crystals the performance can at times be better than multislice, since only the important Bragg reflections in the otherwise sparse diffraction plane are calculated. The physical optics formulation of Bloch waves is therefore an important step towards more routine dynamical diffraction simulation of large data sets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Crystallographica Section A: Foundations and Advances
Acta Crystallographica Section A: Foundations and Advances CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
2.60
自引率
11.10%
发文量
419
期刊介绍: Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials. The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial. The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.
期刊最新文献
Symmetric 3-periodic polycatenanes: catenated rings, polyhedra and rods. A physical optics formulation of Bloch waves and its application to 4D STEM, 3D ED and inelastic scattering simulations. Crystallography of quasiperiodic moiré patterns in homophase twisted bilayers. Deconvoluting thermomechanical effects in X-ray diffraction data using machine learning. Unit-cell parameters determination from a set of independent electron diffraction zonal patterns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1