Yingkai Lyu, Binmao Zhang, Yujuan Chai, Jie Zhang, Li Wang, Yujin Xiao, Bangning Cheng, Chungen Qian, Hui Yang, Hao Li, Xiaotian Tan
{"title":"A Quantitative First Passage Time Model for Tubular Microfluidic Immunoassays.","authors":"Yingkai Lyu, Binmao Zhang, Yujuan Chai, Jie Zhang, Li Wang, Yujin Xiao, Bangning Cheng, Chungen Qian, Hui Yang, Hao Li, Xiaotian Tan","doi":"10.1021/acssensors.4c03336","DOIUrl":null,"url":null,"abstract":"<p><p>Solid-phase immunosorbent reactions, such as ELISA, are widely used for detecting, identifying, and quantifying protein markers. However, traditional centimeter scale well-based immunoreactors suffer from low surface-to-volume (S/V) ratios, leading to large sample consumption and a long assay time. Microfluidic technologies, particularly tubular microfluidic immunoreactors, have emerged as promising alternatives due to their high S/V ratios. Despite experimental advancements, multifactor theoretical studies on tubular microfluidic systems are limited. In this study, we present a theoretical model based on the first passage time method to analyze diffusion-controlled reaction kinetics in tubular microfluidic immunoreactors. We focus on key parameters including binding kinetics, reactor size, and solution viscosity. To validate the model, controlled laboratory experiments were conducted using our in-house developed tip optofluidic immunoassay (TOI). These experimental results confirmed the reliability of theoretical models in the behavior prediction of tubular microfluidic systems under real-world conditions. Our model revealed that accurate and rapid protein biomarker quantification requires not only the development of microscale bioreactors but also the design of next-generation probes with extraordinary binding affinity and specificity. This work offers insights into optimizing critical design parameters in future microfluidic immunoassay development, paving ways for next generation microliter-sized biomolecular analysis.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03336","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-phase immunosorbent reactions, such as ELISA, are widely used for detecting, identifying, and quantifying protein markers. However, traditional centimeter scale well-based immunoreactors suffer from low surface-to-volume (S/V) ratios, leading to large sample consumption and a long assay time. Microfluidic technologies, particularly tubular microfluidic immunoreactors, have emerged as promising alternatives due to their high S/V ratios. Despite experimental advancements, multifactor theoretical studies on tubular microfluidic systems are limited. In this study, we present a theoretical model based on the first passage time method to analyze diffusion-controlled reaction kinetics in tubular microfluidic immunoreactors. We focus on key parameters including binding kinetics, reactor size, and solution viscosity. To validate the model, controlled laboratory experiments were conducted using our in-house developed tip optofluidic immunoassay (TOI). These experimental results confirmed the reliability of theoretical models in the behavior prediction of tubular microfluidic systems under real-world conditions. Our model revealed that accurate and rapid protein biomarker quantification requires not only the development of microscale bioreactors but also the design of next-generation probes with extraordinary binding affinity and specificity. This work offers insights into optimizing critical design parameters in future microfluidic immunoassay development, paving ways for next generation microliter-sized biomolecular analysis.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.