Theo Matzanke, Philipp T Kaulich, Kyowon Jeong, Ayako Takemori, Nobuaki Takemori, Oliver Kohlbacher, Andreas Tholey
{"title":"Cysteine-Directed Isobaric Labeling Combined with GeLC-FAIMS-MS for Quantitative Top-Down Proteomics.","authors":"Theo Matzanke, Philipp T Kaulich, Kyowon Jeong, Ayako Takemori, Nobuaki Takemori, Oliver Kohlbacher, Andreas Tholey","doi":"10.1021/acs.jproteome.4c00835","DOIUrl":null,"url":null,"abstract":"<p><p>The quantification of proteoforms, i.e., all molecular forms in which proteins can be present, by top-down proteomics provides essential insights into biological processes at the molecular level. Isobaric labeling-based quantification strategies are suitable for multidimensional separation strategies and allow for multiplexing of the samples. Here, we investigated cysteine-directed isobaric labeling by iodoTMT in combination with a gel- and gas-phase fractionation (GeLC-FAIMS-MS) for in-depth quantitative proteoform analysis. We optimized the acquisition workflow (i.e., the FAIMS compensation voltages, isolation windows, acquisition strategy, and fragmentation method) using a two-proteome mix to increase the number of quantified proteoforms and reduce ratio compression. Additionally, we implemented a mass feature-based quantification strategy in the widely used deconvolution algorithm FLASHDeconv, which improves and facilitates data analysis. The optimized iodoTMT GeLC-FAIMS-MS workflow was applied to quantitatively analyze the proteome of <i>Escherichia coli</i> grown under glucose or acetate as the sole carbon source, resulting in the identification of 726 differentially abundant proteoforms.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00835","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The quantification of proteoforms, i.e., all molecular forms in which proteins can be present, by top-down proteomics provides essential insights into biological processes at the molecular level. Isobaric labeling-based quantification strategies are suitable for multidimensional separation strategies and allow for multiplexing of the samples. Here, we investigated cysteine-directed isobaric labeling by iodoTMT in combination with a gel- and gas-phase fractionation (GeLC-FAIMS-MS) for in-depth quantitative proteoform analysis. We optimized the acquisition workflow (i.e., the FAIMS compensation voltages, isolation windows, acquisition strategy, and fragmentation method) using a two-proteome mix to increase the number of quantified proteoforms and reduce ratio compression. Additionally, we implemented a mass feature-based quantification strategy in the widely used deconvolution algorithm FLASHDeconv, which improves and facilitates data analysis. The optimized iodoTMT GeLC-FAIMS-MS workflow was applied to quantitatively analyze the proteome of Escherichia coli grown under glucose or acetate as the sole carbon source, resulting in the identification of 726 differentially abundant proteoforms.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".