Lijun Wang, Raza Moshwan, Ningyi Yuan, Zhi-Gang Chen, Xiao-Lei Shi
{"title":"Advances and Challenges in SnTe-Based Thermoelectrics.","authors":"Lijun Wang, Raza Moshwan, Ningyi Yuan, Zhi-Gang Chen, Xiao-Lei Shi","doi":"10.1002/adma.202418280","DOIUrl":null,"url":null,"abstract":"<p><p>SnTe-based thermoelectric materials have attracted significant attention for their exceptional performance in mid-to-high temperature ranges, positioning them as promising candidates for thermoelectric power generation. However, their efficiency is constrained by challenges related to electronic structure, defect chemistry, and phonon behavior. This review comprehensively summarizes advancements in SnTe thermoelectric materials and devices over the past five years, focusing on strategies to address these limitations. Key approaches include defect regulation, carrier transport optimization, and phonon engineering to enhance electrical conductivity, reduce thermal conductivity, and improve overall thermoelectric conversion efficiency. The review highlights breakthroughs in fabrication methods, doping and alloying, composite designs, and the development of novel nanostructures, with particular emphasis on 2D SnTe materials such as monolayers, bilayers, and thin films, which offer new opportunities for performance enhancement. Additionally, it provides an overview of SnTe-based thermoelectric devices, covering fabrication techniques, performance optimization, stability, and flexible device development. Despite significant progress, challenges remain in developing n-type SnTe materials, optimizing interfaces, ensuring long-term stability, and maximizing conversion efficiency. This review fills gaps in the existing literature and offers valuable insights and guidance for future research aimed at improving thermoelectric properties, advancing device integration, and driving the commercial viability of SnTe-based materials for practical applications.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2418280"},"PeriodicalIF":27.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202418280","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
SnTe-based thermoelectric materials have attracted significant attention for their exceptional performance in mid-to-high temperature ranges, positioning them as promising candidates for thermoelectric power generation. However, their efficiency is constrained by challenges related to electronic structure, defect chemistry, and phonon behavior. This review comprehensively summarizes advancements in SnTe thermoelectric materials and devices over the past five years, focusing on strategies to address these limitations. Key approaches include defect regulation, carrier transport optimization, and phonon engineering to enhance electrical conductivity, reduce thermal conductivity, and improve overall thermoelectric conversion efficiency. The review highlights breakthroughs in fabrication methods, doping and alloying, composite designs, and the development of novel nanostructures, with particular emphasis on 2D SnTe materials such as monolayers, bilayers, and thin films, which offer new opportunities for performance enhancement. Additionally, it provides an overview of SnTe-based thermoelectric devices, covering fabrication techniques, performance optimization, stability, and flexible device development. Despite significant progress, challenges remain in developing n-type SnTe materials, optimizing interfaces, ensuring long-term stability, and maximizing conversion efficiency. This review fills gaps in the existing literature and offers valuable insights and guidance for future research aimed at improving thermoelectric properties, advancing device integration, and driving the commercial viability of SnTe-based materials for practical applications.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.