Double-Layer Microneedle Patch Loaded with HA-PBA-QCT for Management of Paclitaxel-Induced Peripheral Neuropathic Pain.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-01-31 DOI:10.1002/smll.202409748
Yunfan Kong, Tianshu Pan, Bo Liu, Mitchell Kuss, Mena A Krishnan, Olawale A Alimi, Wen Shi, Bin Duan
{"title":"Double-Layer Microneedle Patch Loaded with HA-PBA-QCT for Management of Paclitaxel-Induced Peripheral Neuropathic Pain.","authors":"Yunfan Kong, Tianshu Pan, Bo Liu, Mitchell Kuss, Mena A Krishnan, Olawale A Alimi, Wen Shi, Bin Duan","doi":"10.1002/smll.202409748","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapy-induced neuropathic pain (CINP) is a common adverse effect of antineoplastic drugs, often leading to dose reduction, treatment delays, or cessation of chemotherapy. Chemotherapy agents, like paclitaxel (PTX), damage the somatosensory nervous system by inducing neuroinflammation and oxidative stress, resulting in the sensitization of sensory neurons. Quercetin (QCT), known for its anti-inflammatory, antioxidant, and neuroprotective properties, is investigated for various neurological disorders. This work creates phenylboronic acid-modified hyaluronic acid (HA-PBA) gels with incorporated QCT and fabricates a double-layer microneedle (MN) patch using an HA-PBA-QCT complex in the needles and HA/polyvinyl alcohol (PVA) as the substrate. The crosslinking between PVA and HA-PBA-QCT enables a controlled, sustained release of QCT upon application. This work applies these QCT-loaded microneedle (QMN) patches to the instep skin of PTX-treated mice, which exhibits mechanical allodynia and cold hyperalgesia. Biweekly applications of the QMN patches significantly reduce pain responses. This analgesic effect is associated with the modulation of satellite glial cell activity, decreased macrophage infiltration, and reduced TNF-α and IL-6 levels in dorsal root ganglia (DRGs). Additionally, the treatment improves cellular antioxidant capacity, indicated by upregulated Nrf2 and catalase in DRGs. Overall, these findings suggest that double-layer QMN patches offer long-term anti-inflammatory and antioxidant benefits, potentially alleviating CINP in patients.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2409748"},"PeriodicalIF":13.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202409748","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemotherapy-induced neuropathic pain (CINP) is a common adverse effect of antineoplastic drugs, often leading to dose reduction, treatment delays, or cessation of chemotherapy. Chemotherapy agents, like paclitaxel (PTX), damage the somatosensory nervous system by inducing neuroinflammation and oxidative stress, resulting in the sensitization of sensory neurons. Quercetin (QCT), known for its anti-inflammatory, antioxidant, and neuroprotective properties, is investigated for various neurological disorders. This work creates phenylboronic acid-modified hyaluronic acid (HA-PBA) gels with incorporated QCT and fabricates a double-layer microneedle (MN) patch using an HA-PBA-QCT complex in the needles and HA/polyvinyl alcohol (PVA) as the substrate. The crosslinking between PVA and HA-PBA-QCT enables a controlled, sustained release of QCT upon application. This work applies these QCT-loaded microneedle (QMN) patches to the instep skin of PTX-treated mice, which exhibits mechanical allodynia and cold hyperalgesia. Biweekly applications of the QMN patches significantly reduce pain responses. This analgesic effect is associated with the modulation of satellite glial cell activity, decreased macrophage infiltration, and reduced TNF-α and IL-6 levels in dorsal root ganglia (DRGs). Additionally, the treatment improves cellular antioxidant capacity, indicated by upregulated Nrf2 and catalase in DRGs. Overall, these findings suggest that double-layer QMN patches offer long-term anti-inflammatory and antioxidant benefits, potentially alleviating CINP in patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Nano-Scale Anti-Cancer Drug Delivery by a Zn-Based Metal Organic Framework Carrier ZnO-Based Photomultiplication-Type Infrared Photodetectors for Ultrasensitive Upconverters Ln(HCOO)3 (Ln = Y, Gd, Ce, and La) With Triangular Configuration Exhibits Excellent UV Nonlinear Optical Performance Ultrafast Laser Driven Ferromagnetic-Antiferromagnetic Skyrmion Switching in 2D Topological Magnet Ligand-Mediated Highly Ordered Aggregation of 5-Mercapto-2-Nitrobenzoic Acid Protected Atomically Precise Silver Nanocluster
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1