Computational Modeling of the Enzymatic Achmatowicz Rearrangement by Heme-Dependent Chloroperoxidase: Reaction Mechanism, Enantiopreference, Regioselectivity, and Substrate Specificity.
{"title":"Computational Modeling of the Enzymatic Achmatowicz Rearrangement by Heme-Dependent Chloroperoxidase: Reaction Mechanism, Enantiopreference, Regioselectivity, and Substrate Specificity.","authors":"Fuqiang Chen, Chenghua Zhang, Shiqing Zhang, Wuyuan Zhang, Hao Su, Xiang Sheng","doi":"10.1021/acs.jcim.4c01658","DOIUrl":null,"url":null,"abstract":"<p><p>The chloroperoxidase from <i>Caldariomyces fumago</i> (<i>Cf</i>CPO) catalyzes the oxidative ring expansion of α-heterofunctionalized furans via the Achmatowicz rearrangement, providing an elegant tool to convert furan rings into complex-prefunctionalized scaffolds. However, the mechanism of this transformation remains unclear. Herein, the <i>Cf</i>CPO-catalyzed reaction of <i>rac-</i>1-(2-furyl)ethanol (<b>1a</b>) is studied by quantum chemical calculations and molecular dynamics simulations. The calculations reveal that the conversion follows the general mechanism of the Achmatowicz reaction. Notably, the binding of <b>1a</b> to the enzyme's active site influences the Compound I (Cpd I) formation, and the (<i>R</i>)-<b>1a</b> enantiomer binding results in a lower barrier compared to (<i>S</i>)-<b>1a</b>, explaining the observed (<i>R</i>)-enantiopreference toward a racemic substrate. Additionally, due to the weaker steric hindrance between the porphyrin ring and substrate, the nucleophilic attack of Cpd I on the furan core of <b>1a</b> is preferred at the less-substituted C4=C5 bond, providing a rationale for the experimentally observed regioselectivity. Finally, the bottleneck residues in the substrate delivery channel and also the active site surroundings are proposed to be responsible for the substrate specificity of <i>Cf</i>CPO. This study lays a theoretical foundation for the rational design of new CPOs that catalyze the Achmatowicz rearrangement with a broader substrate spectrum or specific stereopreference.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01658","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The chloroperoxidase from Caldariomyces fumago (CfCPO) catalyzes the oxidative ring expansion of α-heterofunctionalized furans via the Achmatowicz rearrangement, providing an elegant tool to convert furan rings into complex-prefunctionalized scaffolds. However, the mechanism of this transformation remains unclear. Herein, the CfCPO-catalyzed reaction of rac-1-(2-furyl)ethanol (1a) is studied by quantum chemical calculations and molecular dynamics simulations. The calculations reveal that the conversion follows the general mechanism of the Achmatowicz reaction. Notably, the binding of 1a to the enzyme's active site influences the Compound I (Cpd I) formation, and the (R)-1a enantiomer binding results in a lower barrier compared to (S)-1a, explaining the observed (R)-enantiopreference toward a racemic substrate. Additionally, due to the weaker steric hindrance between the porphyrin ring and substrate, the nucleophilic attack of Cpd I on the furan core of 1a is preferred at the less-substituted C4=C5 bond, providing a rationale for the experimentally observed regioselectivity. Finally, the bottleneck residues in the substrate delivery channel and also the active site surroundings are proposed to be responsible for the substrate specificity of CfCPO. This study lays a theoretical foundation for the rational design of new CPOs that catalyze the Achmatowicz rearrangement with a broader substrate spectrum or specific stereopreference.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.