{"title":"Theory-Directed Ligand-Shell Engineering of Ultrasmall Gold Clusters: Remarkable Effects of Ligand Arrangement on Optical Properties.","authors":"Rintaro Suzuki, Yuxiang Chen, Yuri Ogawa, Masaki Enokido, Yuichi Kitagawa, Yasuchika Hasegawa, Katsuaki Konishi, Yukatsu Shichibu","doi":"10.1021/acs.jpclett.4c03486","DOIUrl":null,"url":null,"abstract":"<p><p>Ligand-shell engineering of ultrasmall metal clusters is a burgeoning research field aiming to develop cluster-specific properties. However, predicting these properties prior to synthesis is challenging due to their high sensitivity to geometric and/or electronic variations in ultrasmall metal cores, hindering further exploration. In this study, we present a theory-directed ligand-shell design and significant red-shift in absorption of a prolate-shaped [Au<sub>8</sub>(diphosphine)<sub>4</sub>Cl<sub>2</sub>]<sup>2+</sup> cluster by synthesizing and characterizing enantiopure octagold clusters bearing chiral BINAP-type ligands [BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl]. Crystallographic analysis reveals the predesigned ligand arrangement and twisted gold-core framework. The enantiomeric clusters show significant changes in both absorption and photoluminescence compared with a previous Au<sub>8</sub> analogue and exhibit chiroptical signals. Furthermore, theoretical calculations visually unveil the atomic level origins of their optical and chiroptical absorption characteristics. This work not only highlights the effectiveness of ligand-shell engineering in creating unique photophysical properties but also offers a viable, theory-guided strategy for designing and functionalizing ligated metal clusters.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":" ","pages":"1432-1439"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03486","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ligand-shell engineering of ultrasmall metal clusters is a burgeoning research field aiming to develop cluster-specific properties. However, predicting these properties prior to synthesis is challenging due to their high sensitivity to geometric and/or electronic variations in ultrasmall metal cores, hindering further exploration. In this study, we present a theory-directed ligand-shell design and significant red-shift in absorption of a prolate-shaped [Au8(diphosphine)4Cl2]2+ cluster by synthesizing and characterizing enantiopure octagold clusters bearing chiral BINAP-type ligands [BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl]. Crystallographic analysis reveals the predesigned ligand arrangement and twisted gold-core framework. The enantiomeric clusters show significant changes in both absorption and photoluminescence compared with a previous Au8 analogue and exhibit chiroptical signals. Furthermore, theoretical calculations visually unveil the atomic level origins of their optical and chiroptical absorption characteristics. This work not only highlights the effectiveness of ligand-shell engineering in creating unique photophysical properties but also offers a viable, theory-guided strategy for designing and functionalizing ligated metal clusters.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.