In vivo bone regeneration performance of hydroxypropyl methylcellulose hydrogel-based composite bone cements in ovariectomized and ovary-intact rats: a preliminary investigation.

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of Materials Science: Materials in Medicine Pub Date : 2025-01-30 DOI:10.1007/s10856-024-06839-2
Mosharraf Hossain, Tamima Sultana, Ji Eun Moon, Soobin Im, Je Hoon Jeong
{"title":"In vivo bone regeneration performance of hydroxypropyl methylcellulose hydrogel-based composite bone cements in ovariectomized and ovary-intact rats: a preliminary investigation.","authors":"Mosharraf Hossain, Tamima Sultana, Ji Eun Moon, Soobin Im, Je Hoon Jeong","doi":"10.1007/s10856-024-06839-2","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study is to fabricate and develop hydroxypropyl methylcellulose (HPMC) hydrogel (HG)-based composite bone cements with incorporation of hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and with/without polymethylmethacrylate (PMMA) for vertebroplasty. For animal study, twenty female Wister rats (250-300 g, 12 weeks of age) were divided into four groups including a two non-ovariectomy (NOVX) groups and two ovariectomy (OVX)-induced osteoporosis groups. Two prepared biocomposites including HG/β-TCP/HA and HG/β-TCP/HA/PMMA were injected into the tibial defects of both OVX and NOVX rats for evaluating in vivo osteogenesis after 12 weeks. Micro-computed tomography and histological analysis using hematoxylin and eosin (H&E) and Masson's trichrome stains of the two composite cements implanted into the tibial defects of OVX and NOVX rats revealed enhanced bone regeneration potential. However, no statistically significant differences were noted among the groups based on new bone formation, demonstrating that the injected composite cements showed similar osteogenesis effects in both OVX and NOVX rats. These findings suggest that the newly developed composite bone cement composed of HG, β-TCP, HA and/or PMMA may be a promising and professional tool for treating osteoporotic and non-osteoporotic vertebral fractures.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":"16"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10856-024-06839-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this study is to fabricate and develop hydroxypropyl methylcellulose (HPMC) hydrogel (HG)-based composite bone cements with incorporation of hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and with/without polymethylmethacrylate (PMMA) for vertebroplasty. For animal study, twenty female Wister rats (250-300 g, 12 weeks of age) were divided into four groups including a two non-ovariectomy (NOVX) groups and two ovariectomy (OVX)-induced osteoporosis groups. Two prepared biocomposites including HG/β-TCP/HA and HG/β-TCP/HA/PMMA were injected into the tibial defects of both OVX and NOVX rats for evaluating in vivo osteogenesis after 12 weeks. Micro-computed tomography and histological analysis using hematoxylin and eosin (H&E) and Masson's trichrome stains of the two composite cements implanted into the tibial defects of OVX and NOVX rats revealed enhanced bone regeneration potential. However, no statistically significant differences were noted among the groups based on new bone formation, demonstrating that the injected composite cements showed similar osteogenesis effects in both OVX and NOVX rats. These findings suggest that the newly developed composite bone cement composed of HG, β-TCP, HA and/or PMMA may be a promising and professional tool for treating osteoporotic and non-osteoporotic vertebral fractures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
期刊最新文献
Impact of Gd, Pr, Yb, and Nd doping on the magnetic properties of Mg-ferrite nanoparticles. In vivo bone regeneration performance of hydroxypropyl methylcellulose hydrogel-based composite bone cements in ovariectomized and ovary-intact rats: a preliminary investigation. Keratin/chitosan film promotes wound healing in rats with combined radiation-wound injury. Anodized Ti6Al4V-ELI, electroplated with copper is bactericidal against Staphylococcus aureus and enhances macrophage phagocytosis. Unraveling the immunomodulatory and metabolic effects of bioactive glass S53P4 on macrophages in vitro.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1