MARCH5 ameliorates aortic valve calcification via RACGAP1-DRP1 associated mitochondrial quality control

IF 4.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular cell research Pub Date : 2025-01-27 DOI:10.1016/j.bbamcr.2025.119911
Jialiang Zhang , Yaoyu Zhang , Wenhua Lei , Jing Zhou , Yanjiani Xu , Zhou Hao , Yanbiao Liao , Fangyang Huang , Mao Chen
{"title":"MARCH5 ameliorates aortic valve calcification via RACGAP1-DRP1 associated mitochondrial quality control","authors":"Jialiang Zhang ,&nbsp;Yaoyu Zhang ,&nbsp;Wenhua Lei ,&nbsp;Jing Zhou ,&nbsp;Yanjiani Xu ,&nbsp;Zhou Hao ,&nbsp;Yanbiao Liao ,&nbsp;Fangyang Huang ,&nbsp;Mao Chen","doi":"10.1016/j.bbamcr.2025.119911","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Mitochondrial E3 ubiquitin ligase (MARCH5) as an important regulator in maintaining mitochondrial function. Our aims were to investigate the role and mechanism of MARCH5 in aortic valve calcification.</div></div><div><h3>Methods</h3><div>Human aortic valves, both calcified and non-calcified, were analyzed for MARCH5 expression using western blotting. Mitochondrial fragmentation was evaluated using transmission electron microscope. Osteogenic differentiation of human aortic valvular interstitial cells (HVICs) was induced with osteoblastic medium (OM), confirmed by western blotting and Alizarin red staining. Mitochondrial morphology and oxidative phosphorylation were assessed using MitoTracker and Seahorse, respectively. MARCH5-knockdown and ApoE-knockout mice fed high-fat diet were used to study aortic valve calcification.</div></div><div><h3>Results</h3><div>The mitochondrial quality control was impaired in calcified valves, and the level of MARCH5 protein was also decreased in calcified valves. Inhibition of MARCH5 impaired mitochondrial quality control, increased mitochondrial stress and accelerates osteogenic transformation in OM treated HVICs. While, overexpression MARCH5 has the opposite effects. Co-immunoprecipitation, mass spectrometry and molecular docking found MARCH5 interacted Rac GTPase-activating protein 1 (RACGAP1) and promoted its ubiquitination, leading to impaired mitochondrial quality control. Inhibiting RACGAP1 reversed osteogenic transformation induced by MARCH5 silencing in OM treated HVICs. Silencing dynamin-related protein 1 (DRP1) under RACGAP1 inhibition had no additional benefit. In vivo, deficiency of MARCH5 promoted aortic valve calcification, while inhibition RACGAP1 reversed aortic valve calcification in MARCH5 deficiency mice.</div></div><div><h3>Conclusion</h3><div>Downregulation of MARCH5 promotes RACGAP1 ubiquitination, activating DRP1 and impairing mitochondrial quality control, which contributes to aortic valve calcification. This identifies a potential therapeutic target for aortic valve calcification.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 3","pages":"Article 119911"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488925000163","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Mitochondrial E3 ubiquitin ligase (MARCH5) as an important regulator in maintaining mitochondrial function. Our aims were to investigate the role and mechanism of MARCH5 in aortic valve calcification.

Methods

Human aortic valves, both calcified and non-calcified, were analyzed for MARCH5 expression using western blotting. Mitochondrial fragmentation was evaluated using transmission electron microscope. Osteogenic differentiation of human aortic valvular interstitial cells (HVICs) was induced with osteoblastic medium (OM), confirmed by western blotting and Alizarin red staining. Mitochondrial morphology and oxidative phosphorylation were assessed using MitoTracker and Seahorse, respectively. MARCH5-knockdown and ApoE-knockout mice fed high-fat diet were used to study aortic valve calcification.

Results

The mitochondrial quality control was impaired in calcified valves, and the level of MARCH5 protein was also decreased in calcified valves. Inhibition of MARCH5 impaired mitochondrial quality control, increased mitochondrial stress and accelerates osteogenic transformation in OM treated HVICs. While, overexpression MARCH5 has the opposite effects. Co-immunoprecipitation, mass spectrometry and molecular docking found MARCH5 interacted Rac GTPase-activating protein 1 (RACGAP1) and promoted its ubiquitination, leading to impaired mitochondrial quality control. Inhibiting RACGAP1 reversed osteogenic transformation induced by MARCH5 silencing in OM treated HVICs. Silencing dynamin-related protein 1 (DRP1) under RACGAP1 inhibition had no additional benefit. In vivo, deficiency of MARCH5 promoted aortic valve calcification, while inhibition RACGAP1 reversed aortic valve calcification in MARCH5 deficiency mice.

Conclusion

Downregulation of MARCH5 promotes RACGAP1 ubiquitination, activating DRP1 and impairing mitochondrial quality control, which contributes to aortic valve calcification. This identifies a potential therapeutic target for aortic valve calcification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
2.00%
发文量
151
审稿时长
44 days
期刊介绍: BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.
期刊最新文献
NUAKs facilitate mTOR-mediated NSCLC proliferation and metastasis by modulating glucose metabolism and inhibiting p53 activity Senolytic elimination of senescent cells improved periodontal ligament stem cell-based bone regeneration partially through inhibiting YAP Novel therapeutic insights into pathological cardiac hypertrophy: tRF-16-R29P4PE regulates PACE4 and metabolic pathways Hypoxia reduces SLC27A5 to promote hepatocellular carcinoma proliferation by repressing HNF4A Non-synonymous single nucleotide polymorphisms (nsSNPs) within the extracellular domains of the GPM6A gene impair hippocampal neuron development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1