{"title":"Serum starvation induces cytosolic DNA trafficking via exosome and autophagy-lysosome pathway in microglia","authors":"Liyan Zhou, Zilong Wu, Xiaoqing Yi, Dongxue Xie, Jufen Wang, Wenhe Wu","doi":"10.1016/j.bbamcr.2025.119905","DOIUrl":null,"url":null,"abstract":"<div><div>The imbalance of microglial homeostasis is highly associated with age-related neurological diseases, where cytosolic endogenous DNA is also likely to be found. As the main medium for storing biological information, endogenous DNA could be localized to cellular compartments normally free of DNA when cells are stimulated. However, the intracellular trafficking of endogenous DNA remains unidentified. In this study, we demonstrated that nuclear DNA (nDNA) and mitochondrial DNA (mtDNA), as the components of endogenous DNA, undergo different intracellular trafficking under conditions of microglial homeostasis imbalance induced by serum starvation. Upon detecting various components of endogenous DNA in the cytoplasmic and extracellular microglia, we found that cytosolic nDNA primarily exists in a free form and undergoes degradation through the autophagy-lysosome pathway. In contrast, cytosolic mtDNA predominantly exists in a membrane-wrapped form and is trafficked through both exosome and autophagy-lysosome pathways, with the exosome pathway serving as the primary one. When the autophagy-lysosome pathway was inhibited, there was an increase in exosomes. More importantly, the inhibition of the autophagy-lysosome pathway resulted in enhanced trafficking of mtDNA through the exosome pathway. These findings unveiled the crosstalk between these two pathways in the trafficking of microglial cytosolic DNA and thus provide new insights into intervening in age-related neurological diseases.</div></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1872 3","pages":"Article 119905"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488925000102","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The imbalance of microglial homeostasis is highly associated with age-related neurological diseases, where cytosolic endogenous DNA is also likely to be found. As the main medium for storing biological information, endogenous DNA could be localized to cellular compartments normally free of DNA when cells are stimulated. However, the intracellular trafficking of endogenous DNA remains unidentified. In this study, we demonstrated that nuclear DNA (nDNA) and mitochondrial DNA (mtDNA), as the components of endogenous DNA, undergo different intracellular trafficking under conditions of microglial homeostasis imbalance induced by serum starvation. Upon detecting various components of endogenous DNA in the cytoplasmic and extracellular microglia, we found that cytosolic nDNA primarily exists in a free form and undergoes degradation through the autophagy-lysosome pathway. In contrast, cytosolic mtDNA predominantly exists in a membrane-wrapped form and is trafficked through both exosome and autophagy-lysosome pathways, with the exosome pathway serving as the primary one. When the autophagy-lysosome pathway was inhibited, there was an increase in exosomes. More importantly, the inhibition of the autophagy-lysosome pathway resulted in enhanced trafficking of mtDNA through the exosome pathway. These findings unveiled the crosstalk between these two pathways in the trafficking of microglial cytosolic DNA and thus provide new insights into intervening in age-related neurological diseases.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.