Modeling of hydrogeochemical processes influencing uranium migration in anthropized arid environments with application to the Teloua aquifer.

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Journal of contaminant hydrology Pub Date : 2025-01-20 DOI:10.1016/j.jconhyd.2025.104507
L De Windt, P Grizard, C Besançon, F Assalack, I Djibo Hama, P E Reiller, N Seigneur, M Descostes
{"title":"Modeling of hydrogeochemical processes influencing uranium migration in anthropized arid environments with application to the Teloua aquifer.","authors":"L De Windt, P Grizard, C Besançon, F Assalack, I Djibo Hama, P E Reiller, N Seigneur, M Descostes","doi":"10.1016/j.jconhyd.2025.104507","DOIUrl":null,"url":null,"abstract":"<p><p>Sandstone-hosted uranium is mined in the Sahel regions of Niger. The Teloua aquifer is located beneath the ore-processing facilities of one such former mine, COMINAK. The pores of the sandstone bedrock are partially filled by tosudite, a clay with sorption capacities. The local groundwater presents a strong oxidizing signature and very low water recharge. This study aims to determine the geochemical baseline of anthropogenic activity for uranium under such extreme conditions. The major and trace elements of both the contaminated and the pristine local groundwaters were sampled and analyzed to develop geochemical and reactive transport models. Kd distribution coefficients were calculated a posteriori from the mechanistic simulations. The entire water chemistry, with large variations in calcium, carbonate and sulfate concentrations, had to be taken into account to properly simulate the speciation and migration of U(VI) in the aquifer locally affected by the mining activities. U(VI) sorption significantly decreases during the propagation of the contaminant plume, due to the formation of Ca<sub>n</sub>UO<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub><sup>(4-2n)-</sup> complexes that were clearly demonstrated by TRLFS acquisition. The sorption of UO<sub>2</sub>(CO<sub>3</sub>)<sub>n</sub><sup>(2-2n)</sup> can play a key role in the immobilization of U(VI). The mitigating factors for U(VI) are sorption on clay and the dispersion/dilution of the contaminated source terms within the groundwater, in which the strong ternary complexes are less important. There should be an efficient immobilization of fixed anthropic uranium by natural attenuation once the contaminant source terms have become depleted.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104507"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jconhyd.2025.104507","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Sandstone-hosted uranium is mined in the Sahel regions of Niger. The Teloua aquifer is located beneath the ore-processing facilities of one such former mine, COMINAK. The pores of the sandstone bedrock are partially filled by tosudite, a clay with sorption capacities. The local groundwater presents a strong oxidizing signature and very low water recharge. This study aims to determine the geochemical baseline of anthropogenic activity for uranium under such extreme conditions. The major and trace elements of both the contaminated and the pristine local groundwaters were sampled and analyzed to develop geochemical and reactive transport models. Kd distribution coefficients were calculated a posteriori from the mechanistic simulations. The entire water chemistry, with large variations in calcium, carbonate and sulfate concentrations, had to be taken into account to properly simulate the speciation and migration of U(VI) in the aquifer locally affected by the mining activities. U(VI) sorption significantly decreases during the propagation of the contaminant plume, due to the formation of CanUO2(CO3)3(4-2n)- complexes that were clearly demonstrated by TRLFS acquisition. The sorption of UO2(CO3)n(2-2n) can play a key role in the immobilization of U(VI). The mitigating factors for U(VI) are sorption on clay and the dispersion/dilution of the contaminated source terms within the groundwater, in which the strong ternary complexes are less important. There should be an efficient immobilization of fixed anthropic uranium by natural attenuation once the contaminant source terms have become depleted.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of contaminant hydrology
Journal of contaminant hydrology 环境科学-地球科学综合
CiteScore
6.80
自引率
2.80%
发文量
129
审稿时长
68 days
期刊介绍: The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide). The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.
期刊最新文献
The effect of sub-boiling temperatures on mass transfer from former manufactured gas plant residuals. Analytical study for two-dimensional transport of organic contaminant in a polymer material-enhanced composite cutoff wall system. Modeling of hydrogeochemical processes influencing uranium migration in anthropized arid environments with application to the Teloua aquifer. Release of poly- and perfluoroalkyl substances from AFFF-impacted soils: Effects of water saturation in vadose zone soils. Quantification of denitrification rate in shallow groundwater using the single-well, push-pull test technique.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1