Anti-GPC3 antibody and cell-penetrating peptide CPP44 dual-ligand modified liposomes for targeted delivery of arsenic trioxide in the treatment of hepatocellular carcinoma.
Congcong Lin, Jiamin Sun, Yun Yang, Xinyao Pan, Yifan Sun, Bin Sun, Chunli Gan
{"title":"Anti-GPC3 antibody and cell-penetrating peptide CPP44 dual-ligand modified liposomes for targeted delivery of arsenic trioxide in the treatment of hepatocellular carcinoma.","authors":"Congcong Lin, Jiamin Sun, Yun Yang, Xinyao Pan, Yifan Sun, Bin Sun, Chunli Gan","doi":"10.1080/1061186X.2025.2461104","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic trioxide (ATO), the active ingredient in Chinese arsenic, effectively inhibits hepatocellular carcinoma (HCC) cell growth, but its clinical application is limited by the lack of a targeted delivery system. Phosphatidylinositol proteoglycan 3 (GPC3) is specifically expressed in HCC, and CPP44 is a cell-penetrating peptide that targets HCC cells. Here, we developed a liposome incorporating ATO with dual surface modifications of anti-GPC3 antibody and CPP44. The system was firstly enriched and localised at the liver tumour site through passive targeting by EPR and active targeting by specific binding of anti-GPC3 antibody to GPC3 protein. CPP44 then facilitated ATO penetration into HCC cells. Specifically, we first employed computational modelling to demonstrate that the covalently-coupled antibody maintained its binding ability to the GPC3 antigen. Subsequent experimental assays revealed that Dl-ATO-Lp exhibited higher cell uptake rate and stronger tumour cell killing effect. In an HCC mouse model, Dl-ATO-Lp achieved effective tumour targeting, with a tumour inhibition rate of 63.43%. This dual-ligand liposome system enhances the targeted delivery and therapeutic efficacy of ATO, offering a promising direction for solid tumour therapy and advancing the clinical application of ATO.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-10"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2461104","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic trioxide (ATO), the active ingredient in Chinese arsenic, effectively inhibits hepatocellular carcinoma (HCC) cell growth, but its clinical application is limited by the lack of a targeted delivery system. Phosphatidylinositol proteoglycan 3 (GPC3) is specifically expressed in HCC, and CPP44 is a cell-penetrating peptide that targets HCC cells. Here, we developed a liposome incorporating ATO with dual surface modifications of anti-GPC3 antibody and CPP44. The system was firstly enriched and localised at the liver tumour site through passive targeting by EPR and active targeting by specific binding of anti-GPC3 antibody to GPC3 protein. CPP44 then facilitated ATO penetration into HCC cells. Specifically, we first employed computational modelling to demonstrate that the covalently-coupled antibody maintained its binding ability to the GPC3 antigen. Subsequent experimental assays revealed that Dl-ATO-Lp exhibited higher cell uptake rate and stronger tumour cell killing effect. In an HCC mouse model, Dl-ATO-Lp achieved effective tumour targeting, with a tumour inhibition rate of 63.43%. This dual-ligand liposome system enhances the targeted delivery and therapeutic efficacy of ATO, offering a promising direction for solid tumour therapy and advancing the clinical application of ATO.
期刊介绍:
Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs.
Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.