The role of green synthesis metal and metal oxide nanoparticles in oral cancer therapy: a review.

IF 4.3 4区 医学 Q1 PHARMACOLOGY & PHARMACY Journal of Drug Targeting Pub Date : 2025-02-08 DOI:10.1080/1061186X.2025.2461091
Songlin Zhou, Yutao Qin, Anwen Lei, Hai Liu, Yi Sun, Jue Zhang, Chao Deng, Yu Chen
{"title":"The role of green synthesis metal and metal oxide nanoparticles in oral cancer therapy: a review.","authors":"Songlin Zhou, Yutao Qin, Anwen Lei, Hai Liu, Yi Sun, Jue Zhang, Chao Deng, Yu Chen","doi":"10.1080/1061186X.2025.2461091","DOIUrl":null,"url":null,"abstract":"<p><p>There are 275,000 new cases of oral cancer (OC) per year, making it the sixth most common cancer in the world. Severe adverse effects, including loss of function, deformity, and systemic toxicity, are familiar with traditional therapies such as radiation, chemotherapy, and surgery; due to their unique properties, nanoparticles (NPs) have emerged as a superior alternative over chemo/radiotherapy and surgery due to their targeting capability, bioavailability, compatibility, and high solubility. Due to their unique properties, metallic NPs have garnered significant attention in OC control. In addition to the fact that metal NPs may be harmful to human cells, the reactive chemicals used to make them pose the same risk, which limits their use in medicine. Green synthesis (GS) is a novel strategy that uses biological materials like yeast, bacteria, fungi, and plant extracts. Compared to more traditional chemical synthesis processes, these are more environmentally benign and manageable for living organisms. This article summarises the GS of NPs made of metals and metal oxides and their anticancer effects on OC. The method's potential benefits and drawbacks in advancing metallic NPs' GS and shaping OC therapy's future were also discussed.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-24"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2461091","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

There are 275,000 new cases of oral cancer (OC) per year, making it the sixth most common cancer in the world. Severe adverse effects, including loss of function, deformity, and systemic toxicity, are familiar with traditional therapies such as radiation, chemotherapy, and surgery; due to their unique properties, nanoparticles (NPs) have emerged as a superior alternative over chemo/radiotherapy and surgery due to their targeting capability, bioavailability, compatibility, and high solubility. Due to their unique properties, metallic NPs have garnered significant attention in OC control. In addition to the fact that metal NPs may be harmful to human cells, the reactive chemicals used to make them pose the same risk, which limits their use in medicine. Green synthesis (GS) is a novel strategy that uses biological materials like yeast, bacteria, fungi, and plant extracts. Compared to more traditional chemical synthesis processes, these are more environmentally benign and manageable for living organisms. This article summarises the GS of NPs made of metals and metal oxides and their anticancer effects on OC. The method's potential benefits and drawbacks in advancing metallic NPs' GS and shaping OC therapy's future were also discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
期刊最新文献
Recent advances in PAMAM mediated nano-vehicles for targeted drug delivery in cancer therapy. Photodynamic and sonodynamic therapy synergy: mechanistic insights and cellular responses against glioblastoma multiforme. Advances in nano-delivery systems based on diagnosis and theranostics strategy for atherosclerosis. Development of in vitro and in vivo evaluation of mucoadhesive in-situ gel for intranasal delivery of vinpocetine. Selection of LRP1 ligand phage-displayed single domain antibody that transmigrates BBB.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1