Construct validity and responsiveness of clinical upper limb measures and sensor-based arm use within the first year after stroke: a longitudinal cohort study.

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of NeuroEngineering and Rehabilitation Pub Date : 2025-01-29 DOI:10.1186/s12984-024-01512-9
Johannes Pohl, Geert Verheyden, Jeremia Philipp Oskar Held, Andreas Ruediger Luft, Chris Easthope Awai, Janne Marieke Veerbeek
{"title":"Construct validity and responsiveness of clinical upper limb measures and sensor-based arm use within the first year after stroke: a longitudinal cohort study.","authors":"Johannes Pohl, Geert Verheyden, Jeremia Philipp Oskar Held, Andreas Ruediger Luft, Chris Easthope Awai, Janne Marieke Veerbeek","doi":"10.1186/s12984-024-01512-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Construct validity and responsiveness of upper limb outcome measures are essential to interpret motor recovery poststroke. Evaluating the associations between clinical upper limb measures and sensor-based arm use (AU) fosters a coherent understanding of motor recovery. Defining sensor-based AU metrics for intentional upper limb movements could be crucial in mitigating bias from walking-related activities. Here, we investigate the measurement properties of a comprehensive set of clinical measures and sensor-based AU metrics when gait and non-functional upper limb movements are excluded.</p><p><strong>Methods: </strong>In this prospective, longitudinal cohort study, individuals with motor impairment were measured at days 3 ± 2 (D3), 10 ± 2 (D10), 28 ± 4 (D28), 90 ± 7 (D90), and 365 ± 14 (D365) after their first stroke. Using clinical measures, upper limb motor function (Fugl-Meyer Assessment), capacity (Action Research Arm Test, Box & Block Test), and perceived performance (14-item Motor Activity Log) were assessed. Additionally, individuals wore five movement sensors (trunk, wrists, and ankles) for three days. Thirteen AU metrics were computed based on functional movements during non-walking periods. Construct validity across clinical measures and AU metrics was determined by Spearman's rank correlations for each time point. Criterion responsiveness was examined by correlating patient-reported Global Rating of Perceived Change (GRPC) scores and observed change in upper limb measures and AU metrics. Optimal cut-off values for minimal important change (MIC) were estimated by ROC curve analysis.</p><p><strong>Results: </strong>Ninety-three individuals participated. At D3 and D10, correlations between clinical measures and AU metrics showed variability (range r<sub>s</sub>: 0.44-0.90). All following time points showed moderate-to-high positive correlations between clinical measures and affected AU metrics (range r<sub>s</sub>: 0.57-0.88). Unilateral nonaffected AU duration was negatively correlated with clinical measures (range r<sub>s</sub>: -0.48 to -0.77). Responsiveness across outcomes was highest between D10-D28 within moderate to strong relations between GRPC and clinical measures (r<sub>s</sub>: range 0.60-0.73), whereas relations were weaker for AU metrics (range r<sub>s</sub>: 0.28-0.43) Eight MIC values were estimated for clinical measures and nine for AU metrics, showing moderate to good accuracy (66-87%).</p><p><strong>Conclusions: </strong>We present reference data on the construct validity and responsiveness of clinical upper limb measures and specified sensor-based AU metrics within the first year after stroke. The MIC values can be used as a benchmark for clinical stroke rehabilitation.</p><p><strong>Trial registration: </strong>This trial was registered on clinicaltrials.gov; registration number NCT03522519.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"14"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776245/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-024-01512-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Construct validity and responsiveness of upper limb outcome measures are essential to interpret motor recovery poststroke. Evaluating the associations between clinical upper limb measures and sensor-based arm use (AU) fosters a coherent understanding of motor recovery. Defining sensor-based AU metrics for intentional upper limb movements could be crucial in mitigating bias from walking-related activities. Here, we investigate the measurement properties of a comprehensive set of clinical measures and sensor-based AU metrics when gait and non-functional upper limb movements are excluded.

Methods: In this prospective, longitudinal cohort study, individuals with motor impairment were measured at days 3 ± 2 (D3), 10 ± 2 (D10), 28 ± 4 (D28), 90 ± 7 (D90), and 365 ± 14 (D365) after their first stroke. Using clinical measures, upper limb motor function (Fugl-Meyer Assessment), capacity (Action Research Arm Test, Box & Block Test), and perceived performance (14-item Motor Activity Log) were assessed. Additionally, individuals wore five movement sensors (trunk, wrists, and ankles) for three days. Thirteen AU metrics were computed based on functional movements during non-walking periods. Construct validity across clinical measures and AU metrics was determined by Spearman's rank correlations for each time point. Criterion responsiveness was examined by correlating patient-reported Global Rating of Perceived Change (GRPC) scores and observed change in upper limb measures and AU metrics. Optimal cut-off values for minimal important change (MIC) were estimated by ROC curve analysis.

Results: Ninety-three individuals participated. At D3 and D10, correlations between clinical measures and AU metrics showed variability (range rs: 0.44-0.90). All following time points showed moderate-to-high positive correlations between clinical measures and affected AU metrics (range rs: 0.57-0.88). Unilateral nonaffected AU duration was negatively correlated with clinical measures (range rs: -0.48 to -0.77). Responsiveness across outcomes was highest between D10-D28 within moderate to strong relations between GRPC and clinical measures (rs: range 0.60-0.73), whereas relations were weaker for AU metrics (range rs: 0.28-0.43) Eight MIC values were estimated for clinical measures and nine for AU metrics, showing moderate to good accuracy (66-87%).

Conclusions: We present reference data on the construct validity and responsiveness of clinical upper limb measures and specified sensor-based AU metrics within the first year after stroke. The MIC values can be used as a benchmark for clinical stroke rehabilitation.

Trial registration: This trial was registered on clinicaltrials.gov; registration number NCT03522519.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
期刊最新文献
Sway frequencies may predict postural instability in Parkinson's disease: a novel convolutional neural network approach. Lower limb pointing to assess intersegmental dynamics after incomplete spinal cord injury and the associated role of proprioceptive impairments. Correction: Selective nociceptive modulation using a novel prototype of transcutaneous kilohertz high-frequency alternating current stimulation: a crossover double-blind randomized sham-controlled trial. The impact of neck pain and movement performance on the interarticular compressive force of the cervical spine: a cross-sectional study based on OpenSim. Touchscreen-based assessment of upper limb kinematics after stroke: Reliability, validity and sensitivity to motor impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1