Sway frequencies may predict postural instability in Parkinson's disease: a novel convolutional neural network approach.

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of NeuroEngineering and Rehabilitation Pub Date : 2025-02-18 DOI:10.1186/s12984-025-01570-7
David Engel, R Stefan Greulich, Alberto Parola, Kaleb Vinehout, Justus Student, Josefine Waldthaler, Lars Timmermann, Frank Bremmer
{"title":"Sway frequencies may predict postural instability in Parkinson's disease: a novel convolutional neural network approach.","authors":"David Engel, R Stefan Greulich, Alberto Parola, Kaleb Vinehout, Justus Student, Josefine Waldthaler, Lars Timmermann, Frank Bremmer","doi":"10.1186/s12984-025-01570-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Postural instability greatly reduces quality of life in people with Parkinson's disease (PD). Early and objective detection of postural impairments is crucial to facilitate interventions. Our aim was to use a convolutional neural network (CNN) to differentiate people with early to mid-stage PD from healthy age-matched individuals based on spectrogram images obtained from their body sway. We hypothesized the time-frequency content of body sway to be predictive of PD, even when impairments are not yet clinically apparent.</p><p><strong>Methods: </strong>18 people with idiopathic PD and 15 healthy controls (HC) participated in the study. We tracked participants' center of pressure (COP) using a Wii Balance Board and their full-body motion using a Microsoft Kinect, out of which we calculated the trajectory of their center of mass (COM). We used 30 s-snippets of motion data from which we acquired wavelet-based time-frequency spectrograms that were fed into a custom-built CNN as labeled images. We used binary classification to have the network differentiate between individuals with PD and controls (n = 15, respectively).</p><p><strong>Results: </strong>Classification performance was best when the medio-lateral motion of the COM was considered. Here, our network reached a predictive accuracy, sensitivity, specificity, precision and F1-score of 100%, respectively, with a receiver operating characteristic area under the curve of 1.0. Moreover, an explainable AI approach revealed high frequencies in the postural sway data to be most distinct between both groups.</p><p><strong>Conclusion: </strong>Heeding our small and heterogeneous sample, our findings suggest a CNN classifier based on cost-effective and conveniently obtainable posturographic data to be a promising approach to detect postural impairments in early to mid-stage PD and to gain novel insight into the subtle characteristics of impairments at this stage of the disease.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"29"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-025-01570-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Postural instability greatly reduces quality of life in people with Parkinson's disease (PD). Early and objective detection of postural impairments is crucial to facilitate interventions. Our aim was to use a convolutional neural network (CNN) to differentiate people with early to mid-stage PD from healthy age-matched individuals based on spectrogram images obtained from their body sway. We hypothesized the time-frequency content of body sway to be predictive of PD, even when impairments are not yet clinically apparent.

Methods: 18 people with idiopathic PD and 15 healthy controls (HC) participated in the study. We tracked participants' center of pressure (COP) using a Wii Balance Board and their full-body motion using a Microsoft Kinect, out of which we calculated the trajectory of their center of mass (COM). We used 30 s-snippets of motion data from which we acquired wavelet-based time-frequency spectrograms that were fed into a custom-built CNN as labeled images. We used binary classification to have the network differentiate between individuals with PD and controls (n = 15, respectively).

Results: Classification performance was best when the medio-lateral motion of the COM was considered. Here, our network reached a predictive accuracy, sensitivity, specificity, precision and F1-score of 100%, respectively, with a receiver operating characteristic area under the curve of 1.0. Moreover, an explainable AI approach revealed high frequencies in the postural sway data to be most distinct between both groups.

Conclusion: Heeding our small and heterogeneous sample, our findings suggest a CNN classifier based on cost-effective and conveniently obtainable posturographic data to be a promising approach to detect postural impairments in early to mid-stage PD and to gain novel insight into the subtle characteristics of impairments at this stage of the disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
摇摆频率可预测帕金森病的姿势不稳定性:一种新型卷积神经网络方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
期刊最新文献
Sway frequencies may predict postural instability in Parkinson's disease: a novel convolutional neural network approach. Lower limb pointing to assess intersegmental dynamics after incomplete spinal cord injury and the associated role of proprioceptive impairments. Correction: Selective nociceptive modulation using a novel prototype of transcutaneous kilohertz high-frequency alternating current stimulation: a crossover double-blind randomized sham-controlled trial. The impact of neck pain and movement performance on the interarticular compressive force of the cervical spine: a cross-sectional study based on OpenSim. Touchscreen-based assessment of upper limb kinematics after stroke: Reliability, validity and sensitivity to motor impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1