Protein kinase C iota (PKCι) and pVHL are both needed for lysosomal degradation of α5 integrin in renal carcinoma cells.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biology Reports Pub Date : 2025-01-30 DOI:10.1007/s11033-025-10272-1
Alissa F Schurr, Chandni S Dave, Prachi J Shah, Jennifer L Meth, Alexandria S Jaramillo, Kelly Bartley, Alan R Schoenfeld
{"title":"Protein kinase C iota (PKCι) and pVHL are both needed for lysosomal degradation of α5 integrin in renal carcinoma cells.","authors":"Alissa F Schurr, Chandni S Dave, Prachi J Shah, Jennifer L Meth, Alexandria S Jaramillo, Kelly Bartley, Alan R Schoenfeld","doi":"10.1007/s11033-025-10272-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>von Hippel-Lindau (VHL) hereditary cancer syndrome is caused by mutations in the VHL tumor suppressor gene and is characterized by a predisposition to form various types of tumors, including renal cell carcinomas, hemangioblastomas, and pheochromocytomas. The protein products of the VHL gene, pVHL, are part of an ubiquitin ligase complex that tags hypoxia inducible factor alpha (HIF-α) for proteosomal degradation. pVHL has also been reported to bind to atypical protein kinase C (aPKC).</p><p><strong>Methods and results: </strong>To better understand the relationship between pVHL and aPKC, the PKC iota (PKCι) isoform of aPKC was knocked out in renal carcinoma cells, both pVHL-negative and those with replaced pVHL. Cellular properties associated with pVHL function were assayed. Knockout of PKCι in pVHL-expressing cells led to greater downregulation of HIF-α than seen with pVHL alone, suggesting that the presence of PKCι opposes complete regulation of HIF-α by pVHL. In contrast, absence of either pVHL or PKCι disrupted tight junction formation and led to upregulated levels of α5 integrin, both of which were phenocopied by lysosomal inhibition. LAMP1 (lysosome associated membrane protein 1), a marker for lysosomes, showed dysregulated localization and altered electrophoretic gel migration in the absence of pVHL. While the upregulated α5 integrin seen in the absence of either pVHL or PKCι loss was associated with increased cell adhesion, loss of pVHL caused increased cell motility whereas loss of PKCι decreased motility.</p><p><strong>Conclusions: </strong>These data are consistent with a known role of PKCι in endocytosis of α5 integrin and suggest a subsequent novel role of pVHL in targeting a pool of endocytosed α5 integrin for lysosomal degradation.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"177"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10272-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: von Hippel-Lindau (VHL) hereditary cancer syndrome is caused by mutations in the VHL tumor suppressor gene and is characterized by a predisposition to form various types of tumors, including renal cell carcinomas, hemangioblastomas, and pheochromocytomas. The protein products of the VHL gene, pVHL, are part of an ubiquitin ligase complex that tags hypoxia inducible factor alpha (HIF-α) for proteosomal degradation. pVHL has also been reported to bind to atypical protein kinase C (aPKC).

Methods and results: To better understand the relationship between pVHL and aPKC, the PKC iota (PKCι) isoform of aPKC was knocked out in renal carcinoma cells, both pVHL-negative and those with replaced pVHL. Cellular properties associated with pVHL function were assayed. Knockout of PKCι in pVHL-expressing cells led to greater downregulation of HIF-α than seen with pVHL alone, suggesting that the presence of PKCι opposes complete regulation of HIF-α by pVHL. In contrast, absence of either pVHL or PKCι disrupted tight junction formation and led to upregulated levels of α5 integrin, both of which were phenocopied by lysosomal inhibition. LAMP1 (lysosome associated membrane protein 1), a marker for lysosomes, showed dysregulated localization and altered electrophoretic gel migration in the absence of pVHL. While the upregulated α5 integrin seen in the absence of either pVHL or PKCι loss was associated with increased cell adhesion, loss of pVHL caused increased cell motility whereas loss of PKCι decreased motility.

Conclusions: These data are consistent with a known role of PKCι in endocytosis of α5 integrin and suggest a subsequent novel role of pVHL in targeting a pool of endocytosed α5 integrin for lysosomal degradation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
期刊最新文献
In silico analysis of non-conventional gene targets for genetic interventions to enhance fatty acid production: a review. Molecular detection of Wolbachia sp. and Cytoplasmic incompatibility factors (CifA/B) in wild caught mosquitoes in Côte d'Ivoire. Therapeutical potential of natural products in treatment of pancreatic cancer: a review. Upregulation of the MAP2K4 gene triggers endothelial-mesenchymal transition in COVID-19. Protein kinase C iota (PKCι) and pVHL are both needed for lysosomal degradation of α5 integrin in renal carcinoma cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1