Upregulation of the MAP2K4 gene triggers endothelial-mesenchymal transition in COVID-19.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biology Reports Pub Date : 2025-01-31 DOI:10.1007/s11033-025-10289-6
Esra Yilmaz, Dilek Yilmaz, Can Gokay Yildiz, Ercan Cacan
{"title":"Upregulation of the MAP2K4 gene triggers endothelial-mesenchymal transition in COVID-19.","authors":"Esra Yilmaz, Dilek Yilmaz, Can Gokay Yildiz, Ercan Cacan","doi":"10.1007/s11033-025-10289-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>SARS-CoV-2 infection is marked by an excessive inflammatory response, leading to elevated production of pro-inflammatory cytokines through activation of intracellular pathways like mitogen-activated protein kinase (MAPK). Viruses can use the MAPK signaling pathway to their advantage, but the relationship of this pathway to the severe SARS-CoV-2 period has not been fully elucidated. MAP2K4 is involved in the MAPK signaling pathway and affects cellular processes such as cell-cell junction, cell proliferation, differentiation and apoptosis.</p><p><strong>Methods and results: </strong>In this study, we sought to determine the associated biomarkers that are involved in the MAP2K4 pathway and elucidate its possible roles in terms of some clinical features associated with COVID-19. We evaluated the expressions of MAP2K4, SNAI1, SLUG, ZEB1 and E-Cadherin. For this purpose, we prospectively recruited 66 individuals, 39 of whom were women and had a mean age of 65 years. The results revealed that MAP2K4 upregulation increased SNAI1 gene expression level whereas E- Cadherin level was decreased in SARS-CoV-2 positive participants. In addition, negative correlations were determined with PLT, Lymphocyte and CKMB and E- Cadherin levels in positive participants. We also observed a negative correlation between the MAP2K4 and AST, and a positive correlation between SLUG and BUN, ZEB1 and CK.</p><p><strong>Conclusions: </strong>We conclude that SARS-CoV-2 infection triggers fibrosis by increasing MAP2K4 regulation. Additionally, this is the first study to demonstrate the possible contribution of MAP2K4 in influencing COVID-19 clinical features, which may be relevant for identifying COVID-19 positive participants with severe complications.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"180"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10289-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: SARS-CoV-2 infection is marked by an excessive inflammatory response, leading to elevated production of pro-inflammatory cytokines through activation of intracellular pathways like mitogen-activated protein kinase (MAPK). Viruses can use the MAPK signaling pathway to their advantage, but the relationship of this pathway to the severe SARS-CoV-2 period has not been fully elucidated. MAP2K4 is involved in the MAPK signaling pathway and affects cellular processes such as cell-cell junction, cell proliferation, differentiation and apoptosis.

Methods and results: In this study, we sought to determine the associated biomarkers that are involved in the MAP2K4 pathway and elucidate its possible roles in terms of some clinical features associated with COVID-19. We evaluated the expressions of MAP2K4, SNAI1, SLUG, ZEB1 and E-Cadherin. For this purpose, we prospectively recruited 66 individuals, 39 of whom were women and had a mean age of 65 years. The results revealed that MAP2K4 upregulation increased SNAI1 gene expression level whereas E- Cadherin level was decreased in SARS-CoV-2 positive participants. In addition, negative correlations were determined with PLT, Lymphocyte and CKMB and E- Cadherin levels in positive participants. We also observed a negative correlation between the MAP2K4 and AST, and a positive correlation between SLUG and BUN, ZEB1 and CK.

Conclusions: We conclude that SARS-CoV-2 infection triggers fibrosis by increasing MAP2K4 regulation. Additionally, this is the first study to demonstrate the possible contribution of MAP2K4 in influencing COVID-19 clinical features, which may be relevant for identifying COVID-19 positive participants with severe complications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
期刊最新文献
In silico analysis of non-conventional gene targets for genetic interventions to enhance fatty acid production: a review. Molecular detection of Wolbachia sp. and Cytoplasmic incompatibility factors (CifA/B) in wild caught mosquitoes in Côte d'Ivoire. Therapeutical potential of natural products in treatment of pancreatic cancer: a review. Upregulation of the MAP2K4 gene triggers endothelial-mesenchymal transition in COVID-19. Protein kinase C iota (PKCι) and pVHL are both needed for lysosomal degradation of α5 integrin in renal carcinoma cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1