The Role of Gut Microbiota in Shaping Immune Responses in Tephritidae Fruit Fly and Prospective Implications for Management.

IF 1.4 3区 农林科学 Q2 ENTOMOLOGY Neotropical Entomology Pub Date : 2025-01-29 DOI:10.1007/s13744-025-01248-8
Kamran Haider, Muhammad Sufian, Dilawar Abbas, Kamil Kabir, Muhammad Shamekh Ali, Yasmin Kausar, Muhammad Adeel Ghafar
{"title":"The Role of Gut Microbiota in Shaping Immune Responses in Tephritidae Fruit Fly and Prospective Implications for Management.","authors":"Kamran Haider, Muhammad Sufian, Dilawar Abbas, Kamil Kabir, Muhammad Shamekh Ali, Yasmin Kausar, Muhammad Adeel Ghafar","doi":"10.1007/s13744-025-01248-8","DOIUrl":null,"url":null,"abstract":"<p><p>The interaction of microbial communities with host immunity has become one of the most explored research areas with significant implications for pest control strategies. It has been found that the gut microbiota plays substantial roles in immune response regulation and host-gut microbiome symbiosis, as well as in pathogen resistance and overall fitness in Tephritidae fruit flies that are major pests of agricultural importance. In this review, we discuss the modulation of immune responses of Tephritidae fruit flies by the gut microbiota with particular emphasis on the general interactions between microbiota and the immune system. These interactions help to unravel new horizons of pest management. Regulating gut microbiota modifies the performance of biological control agents and SIT and allows the creation of microbial therapies that affect the vital physiological functions of fruit flies. Besides, deploying microbes that can modulate the immune response and using microbial-derived signals provide an eco-friendly and more sustainable way of eradicating chemical pesticides and making farming systems less susceptible to climatic variability. This paper reviews various aspects of the possibility of using gut microbiota for changing the approach to Integrated Pest Management (IPM) programs that would improve methods of controlling Tephritidae fruit fly populations more ecologically.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":"54 1","pages":"34"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neotropical Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s13744-025-01248-8","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction of microbial communities with host immunity has become one of the most explored research areas with significant implications for pest control strategies. It has been found that the gut microbiota plays substantial roles in immune response regulation and host-gut microbiome symbiosis, as well as in pathogen resistance and overall fitness in Tephritidae fruit flies that are major pests of agricultural importance. In this review, we discuss the modulation of immune responses of Tephritidae fruit flies by the gut microbiota with particular emphasis on the general interactions between microbiota and the immune system. These interactions help to unravel new horizons of pest management. Regulating gut microbiota modifies the performance of biological control agents and SIT and allows the creation of microbial therapies that affect the vital physiological functions of fruit flies. Besides, deploying microbes that can modulate the immune response and using microbial-derived signals provide an eco-friendly and more sustainable way of eradicating chemical pesticides and making farming systems less susceptible to climatic variability. This paper reviews various aspects of the possibility of using gut microbiota for changing the approach to Integrated Pest Management (IPM) programs that would improve methods of controlling Tephritidae fruit fly populations more ecologically.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neotropical Entomology
Neotropical Entomology 生物-昆虫学
CiteScore
3.30
自引率
5.60%
发文量
69
审稿时长
6-12 weeks
期刊介绍: Neotropical Entomology is a bimonthly journal, edited by the Sociedade Entomológica do Brasil (Entomological Society of Brazil) that publishes original articles produced by Brazilian and international experts in several subspecialties of entomology. These include bionomics, systematics, morphology, physiology, behavior, ecology, biological control, crop protection and acarology.
期刊最新文献
Plant Oil Nano-Emulsions as a Potential Solution for Pest Control in Sustainable Agriculture. Low Abundance of Regular Pollinators and Indirect Competitive Effects of Dominant Small Bees Negatively Affect Passion Fruit Pollination in Smallholder Croplands. Ariasa iporaensis n. sp. (Hemiptera: Cicadidae: Cicadinae: Fidicinini): An Uncommon Brazilian Dry Season Cicada. Morphological Phylogeny of Dactylomyia Aldrich, 1894 (Diptera: Dolichopodidae: Neurigoninae), with Proposal of a New Synonym and Description of Five New Species. The Role of Gut Microbiota in Shaping Immune Responses in Tephritidae Fruit Fly and Prospective Implications for Management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1