{"title":"Development and Evaluation of a Hypertension Prediction Model for Community-Based Screening of Sleep-Disordered Breathing.","authors":"Tong Feng, Guangliang Shan, Yaoda Hu, Huijing He, Guo Pei, Ruohan Zhou, Qiong Ou","doi":"10.2147/NSS.S492796","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Approximately 30% of patients with sleep-disordered breathing (SDB) present with masked hypertension, primarily characterized by elevated nighttime blood pressure. This study aimed to develop a hypertension prediction model tailored for primary care physicians, utilizing simple, readily available predictors derived from type IV sleep monitoring devices.</p><p><strong>Patients and methods: </strong>Participants were recruited from communities in Guangdong Province, China, between April and May 2021. Data collection included demographic information, clinical indicators, and results from type IV sleep monitors, which recorded oxygen desaturation index (ODI), average nocturnal oxygen saturation (MeanSpO2), and lowest recorded oxygen saturation (MinSpO2). Hypertension was diagnosed using blood pressure monitoring or self-reported antihypertensive medication use. A nomogram was constructed using multivariate logistic regression after Least Absolute Shrinkage and Selection Operator (LASSO) regression identified six predictors: waist circumference, age, ODI, diabetes status, family history of hypertension, and apnea. Model performance was evaluated using area under the curve (AUC), calibration plots, and decision curve analysis (DCA).</p><p><strong>Results: </strong>The model, developed in a cohort of 680 participants and validated in 401 participants, achieved an AUC of 0.775 (95% CI: 0.730-0.820) in validation set. Calibration plots demonstrated excellent agreement between predictions and outcomes, while DCA confirmed significant clinical utility.</p><p><strong>Conclusion: </strong>This hypertension prediction model leverages easily accessible indicators, including oximetry data from type IV sleep monitors, enabling effective screening during community-based SDB assessments. It provides a cost-effective and practical tool for prioritizing early intervention and management strategies in both primary care and clinical settings.</p>","PeriodicalId":18896,"journal":{"name":"Nature and Science of Sleep","volume":"17 ","pages":"167-182"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776509/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature and Science of Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/NSS.S492796","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Approximately 30% of patients with sleep-disordered breathing (SDB) present with masked hypertension, primarily characterized by elevated nighttime blood pressure. This study aimed to develop a hypertension prediction model tailored for primary care physicians, utilizing simple, readily available predictors derived from type IV sleep monitoring devices.
Patients and methods: Participants were recruited from communities in Guangdong Province, China, between April and May 2021. Data collection included demographic information, clinical indicators, and results from type IV sleep monitors, which recorded oxygen desaturation index (ODI), average nocturnal oxygen saturation (MeanSpO2), and lowest recorded oxygen saturation (MinSpO2). Hypertension was diagnosed using blood pressure monitoring or self-reported antihypertensive medication use. A nomogram was constructed using multivariate logistic regression after Least Absolute Shrinkage and Selection Operator (LASSO) regression identified six predictors: waist circumference, age, ODI, diabetes status, family history of hypertension, and apnea. Model performance was evaluated using area under the curve (AUC), calibration plots, and decision curve analysis (DCA).
Results: The model, developed in a cohort of 680 participants and validated in 401 participants, achieved an AUC of 0.775 (95% CI: 0.730-0.820) in validation set. Calibration plots demonstrated excellent agreement between predictions and outcomes, while DCA confirmed significant clinical utility.
Conclusion: This hypertension prediction model leverages easily accessible indicators, including oximetry data from type IV sleep monitors, enabling effective screening during community-based SDB assessments. It provides a cost-effective and practical tool for prioritizing early intervention and management strategies in both primary care and clinical settings.
期刊介绍:
Nature and Science of Sleep is an international, peer-reviewed, open access journal covering all aspects of sleep science and sleep medicine, including the neurophysiology and functions of sleep, the genetics of sleep, sleep and society, biological rhythms, dreaming, sleep disorders and therapy, and strategies to optimize healthy sleep.
Specific topics covered in the journal include:
The functions of sleep in humans and other animals
Physiological and neurophysiological changes with sleep
The genetics of sleep and sleep differences
The neurotransmitters, receptors and pathways involved in controlling both sleep and wakefulness
Behavioral and pharmacological interventions aimed at improving sleep, and improving wakefulness
Sleep changes with development and with age
Sleep and reproduction (e.g., changes across the menstrual cycle, with pregnancy and menopause)
The science and nature of dreams
Sleep disorders
Impact of sleep and sleep disorders on health, daytime function and quality of life
Sleep problems secondary to clinical disorders
Interaction of society with sleep (e.g., consequences of shift work, occupational health, public health)
The microbiome and sleep
Chronotherapy
Impact of circadian rhythms on sleep, physiology, cognition and health
Mechanisms controlling circadian rhythms, centrally and peripherally
Impact of circadian rhythm disruptions (including night shift work, jet lag and social jet lag) on sleep, physiology, cognition and health
Behavioral and pharmacological interventions aimed at reducing adverse effects of circadian-related sleep disruption
Assessment of technologies and biomarkers for measuring sleep and/or circadian rhythms
Epigenetic markers of sleep or circadian disruption.