A more rapid method for transformation of Helicobacter pylori.

IF 3.7 2区 生物学 Q2 MICROBIOLOGY mSphere Pub Date : 2025-01-31 DOI:10.1128/msphere.00005-25
Caroline D Skene, Richard L Ferrero
{"title":"A more rapid method for transformation of <i>Helicobacter pylori</i>.","authors":"Caroline D Skene, Richard L Ferrero","doi":"10.1128/msphere.00005-25","DOIUrl":null,"url":null,"abstract":"<p><p><i>Helicobacter pylori</i> is a major causative agent in several upper gastroduodenal tract diseases, including gastric cancer. The development of methods to genetically manipulate <i>H. pylori</i> by natural transformation has allowed a greater understanding of its biology and role in these diseases. Nevertheless, the transformation methods used for <i>H. pylori</i> are time-consuming, requiring growth of these fastidious and slow-growing bacteria from -80°C stocks. The aim of the study was to develop a more rapid and convenient method for generating <i>H. pylori</i> mutants. We describe here a method in which competent <i>H. pylori</i> bacteria can be stored at -80°C and used in transformations on the day of resuscitation, similar to methods routinely used for <i>Escherichia coli</i>. This means that transformation can be performed at will and that transformants can be obtained within days, rather than weeks. Furthermore, we show that bacteria remain competent for at least six months storage at -80°C and that the method is applicable to strains with varying levels of natural competence. Transformation efficiencies of the bacteria varied between 10<sup>1</sup> and 10<sup>6</sup> transformants/total colony-forming units/µg donor DNA, depending on the strain. We suggest that this improved method will facilitate studies on <i>H. pylori</i> and, moreover, may be applicable to other naturally transformable pathogens with fastidious growth requirements and requiring ultra-low temperature refrigeration for long-term preservation.IMPORTANCEGenetic manipulation is an important tool in the study of pathogenic bacteria and their interactions with the host. Many pathogenic bacteria are naturally transformable; however, transformation experiments can be impeded by the slow-growing and fastidious nature of some species. One such bacterium is <i>Helicobacter pylori</i>, which requires resuscitation from -80°C and multiple subcultures prior to transformation. The method described in the current study uses a simple modification of a conventional method of natural transformation. Using this method, competent <i>H. pylori</i> bacteria can be stored for long periods (at least six months) and resuscitated as needed for use in experiments. The method circumvents the need for multiple and lengthy subcultures prior to transformation, nor does it involve costly materials, complicated procedures, or sophisticated equipment. Thus, we describe a simple, inexpensive, and time-efficient method that may have broader applications for use with other fastidious bacteria.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0000525"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00005-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Helicobacter pylori is a major causative agent in several upper gastroduodenal tract diseases, including gastric cancer. The development of methods to genetically manipulate H. pylori by natural transformation has allowed a greater understanding of its biology and role in these diseases. Nevertheless, the transformation methods used for H. pylori are time-consuming, requiring growth of these fastidious and slow-growing bacteria from -80°C stocks. The aim of the study was to develop a more rapid and convenient method for generating H. pylori mutants. We describe here a method in which competent H. pylori bacteria can be stored at -80°C and used in transformations on the day of resuscitation, similar to methods routinely used for Escherichia coli. This means that transformation can be performed at will and that transformants can be obtained within days, rather than weeks. Furthermore, we show that bacteria remain competent for at least six months storage at -80°C and that the method is applicable to strains with varying levels of natural competence. Transformation efficiencies of the bacteria varied between 101 and 106 transformants/total colony-forming units/µg donor DNA, depending on the strain. We suggest that this improved method will facilitate studies on H. pylori and, moreover, may be applicable to other naturally transformable pathogens with fastidious growth requirements and requiring ultra-low temperature refrigeration for long-term preservation.IMPORTANCEGenetic manipulation is an important tool in the study of pathogenic bacteria and their interactions with the host. Many pathogenic bacteria are naturally transformable; however, transformation experiments can be impeded by the slow-growing and fastidious nature of some species. One such bacterium is Helicobacter pylori, which requires resuscitation from -80°C and multiple subcultures prior to transformation. The method described in the current study uses a simple modification of a conventional method of natural transformation. Using this method, competent H. pylori bacteria can be stored for long periods (at least six months) and resuscitated as needed for use in experiments. The method circumvents the need for multiple and lengthy subcultures prior to transformation, nor does it involve costly materials, complicated procedures, or sophisticated equipment. Thus, we describe a simple, inexpensive, and time-efficient method that may have broader applications for use with other fastidious bacteria.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
mSphere
mSphere Immunology and Microbiology-Microbiology
CiteScore
8.50
自引率
2.10%
发文量
192
审稿时长
11 weeks
期刊介绍: mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.
期刊最新文献
Prospective comparison of the digestive tract resistome and microbiota in cattle raised in grass-fed versus grain-fed production systems. Prophages are infrequently associated with antibiotic resistance in Pseudomonas aeruginosa clinical isolates. Virus-induced perturbations in the mouse microbiome are impacted by microbial experience. Abundance of clinically relevant antimicrobial resistance genes in the golden jackal (Canis aureus) gut. Characterization of diet-linked amino acid pool influence on Fusobacterium spp. growth and metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1