Zheng-Hao Liu, Yu Meng, Yu-Ze Wu, Ze-Yan Hao, Zhen-Peng Xu, Cheng-Jun Ai, Hai Wei, Kai Wen, Jing-Ling Chen, Jie Ma, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo
{"title":"Exploring the boundary of quantum correlations with a time-domain optical processor.","authors":"Zheng-Hao Liu, Yu Meng, Yu-Ze Wu, Ze-Yan Hao, Zhen-Peng Xu, Cheng-Jun Ai, Hai Wei, Kai Wen, Jing-Ling Chen, Jie Ma, Jin-Shi Xu, Chuan-Feng Li, Guang-Can Guo","doi":"10.1126/sciadv.abd8080","DOIUrl":null,"url":null,"abstract":"<p><p>Contextuality is a hallmark feature of the quantum theory that captures its incompatibility with any noncontextual hidden-variable model. The Greenberger-Horne-Zeilinger (GHZ)-type paradoxes are proofs of contextuality that reveal this incompatibility with deterministic logical arguments. However, the GHZ-type paradox whose events can be included in the fewest contexts and that brings the strongest nonclassicality remains elusive. Here, we derive a GHZ-type paradox with a context-cover number of 3 and show that this number saturates the lower bound posed by quantum theory. We demonstrate the paradox with a time-domain fiber optical platform and recover the quantum prediction in a 37-dimensional setup based on high-speed modulation, convolution, and homodyne detection of time-multiplexed pulsed coherent light. By proposing and studying a strong form of contextuality in high-dimensional Hilbert space, our results pave the way for the exploration of exotic quantum correlations with time-multiplexed optical systems.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 5","pages":"eabd8080"},"PeriodicalIF":11.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.abd8080","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Contextuality is a hallmark feature of the quantum theory that captures its incompatibility with any noncontextual hidden-variable model. The Greenberger-Horne-Zeilinger (GHZ)-type paradoxes are proofs of contextuality that reveal this incompatibility with deterministic logical arguments. However, the GHZ-type paradox whose events can be included in the fewest contexts and that brings the strongest nonclassicality remains elusive. Here, we derive a GHZ-type paradox with a context-cover number of 3 and show that this number saturates the lower bound posed by quantum theory. We demonstrate the paradox with a time-domain fiber optical platform and recover the quantum prediction in a 37-dimensional setup based on high-speed modulation, convolution, and homodyne detection of time-multiplexed pulsed coherent light. By proposing and studying a strong form of contextuality in high-dimensional Hilbert space, our results pave the way for the exploration of exotic quantum correlations with time-multiplexed optical systems.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.