{"title":"Valorization of agro-industrial waste through solid-state fermentation: Mini review","authors":"Mohammad Perwez , Sameer Al Asheh","doi":"10.1016/j.btre.2024.e00873","DOIUrl":null,"url":null,"abstract":"<div><div>Agriculture and industrial waste are produced in large volumes every year worldwide, causing serious concerns about their disposal. These wastes have high organic content, which microorganisms can easily assimilate into relevant value-added products. Valorization of agro-industrial waste is required for sustainable development. Solid state fermentation is an excellent method of utilizing waste for circular bioeconomy. Exploitation of agro-industrial waste as a substrate utilizing microorganisms for solid state fermentation provides beneficial products for use in industries and other fields. The use of waste reduces the cost of production of value-added products. This method is an environmentally friendly, economical and feasible approach for waste management. This review discusses the factors affecting the production of value-added products through solid state fermentation. It also discusses the valuable products from solid state fermentation technology, such as antibiotics, enzymes, organic acids, bioremediation, biosurfactants and biofertilizers. Challenges and future prospects are also presented.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"45 ","pages":"Article e00873"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780145/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X24000468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
Agriculture and industrial waste are produced in large volumes every year worldwide, causing serious concerns about their disposal. These wastes have high organic content, which microorganisms can easily assimilate into relevant value-added products. Valorization of agro-industrial waste is required for sustainable development. Solid state fermentation is an excellent method of utilizing waste for circular bioeconomy. Exploitation of agro-industrial waste as a substrate utilizing microorganisms for solid state fermentation provides beneficial products for use in industries and other fields. The use of waste reduces the cost of production of value-added products. This method is an environmentally friendly, economical and feasible approach for waste management. This review discusses the factors affecting the production of value-added products through solid state fermentation. It also discusses the valuable products from solid state fermentation technology, such as antibiotics, enzymes, organic acids, bioremediation, biosurfactants and biofertilizers. Challenges and future prospects are also presented.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.