Salinity induced changes in esterase, peroxidase and alcohol dehydrogenase isozymes and leaf soluble proteins in salinity susceptible and salinity tolerant sugarcane genotypes
{"title":"Salinity induced changes in esterase, peroxidase and alcohol dehydrogenase isozymes and leaf soluble proteins in salinity susceptible and salinity tolerant sugarcane genotypes","authors":"Manisha Rameshrao Patil , A.A. Kale , Ajay Kumar Singh , Priyanka Rameshrao Patil , Shaheen Badshah Inamdar , R.D. Satbhai","doi":"10.1016/j.btre.2025.e00880","DOIUrl":null,"url":null,"abstract":"<div><div>The salinity susceptible CoC-671 and salinity tolerant sugarcane genotype CoM-265 were evaluated for Peroxidase (POX), Esterase (EST) and Alcohol Dehydrogenase (ADH) isozymes and soluble protein profiling by SDS and native-PAGE at salinity levels 0.41 dSm<sup>-1</sup>, 2.31 dSm<sup>-1</sup>, 4.21 dSm<sup>-1</sup>, and 8.01 dSm<sup>-1</sup> maintained by NaCl solution. The plant height, number of leaves and seedling diameter got reduced in salinity susceptible sugarcane genotype CoC-671 as well as salinity tolerant sugarcane genotype CoM-265 with increase in salinity levels. However, reduction in plant height, number of leaves and seedling diameter was less in salinity tolerant sugarcane genotype CoM-265 as compared to salinity susceptible sugarcane genotype CoC-671. The POX isozyme profiling revealed that salinity susceptible CoC-671 and salinity tolerant sugarcane genotype CoM-265 had variation in soluble protein band intensity at different salinity levels with relative mobility (Rm) 0.137. The present study could be useful for genetic variability analysis in sugarcane genotypes differing in salinity stress tolerance capability.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"45 ","pages":"Article e00880"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X25000074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
The salinity susceptible CoC-671 and salinity tolerant sugarcane genotype CoM-265 were evaluated for Peroxidase (POX), Esterase (EST) and Alcohol Dehydrogenase (ADH) isozymes and soluble protein profiling by SDS and native-PAGE at salinity levels 0.41 dSm-1, 2.31 dSm-1, 4.21 dSm-1, and 8.01 dSm-1 maintained by NaCl solution. The plant height, number of leaves and seedling diameter got reduced in salinity susceptible sugarcane genotype CoC-671 as well as salinity tolerant sugarcane genotype CoM-265 with increase in salinity levels. However, reduction in plant height, number of leaves and seedling diameter was less in salinity tolerant sugarcane genotype CoM-265 as compared to salinity susceptible sugarcane genotype CoC-671. The POX isozyme profiling revealed that salinity susceptible CoC-671 and salinity tolerant sugarcane genotype CoM-265 had variation in soluble protein band intensity at different salinity levels with relative mobility (Rm) 0.137. The present study could be useful for genetic variability analysis in sugarcane genotypes differing in salinity stress tolerance capability.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.