EEG-derived brainwave patterns for depression diagnosis via hybrid machine learning and deep learning frameworks.

IF 1.4 4区 心理学 Q4 CLINICAL NEUROLOGY Applied Neuropsychology-Adult Pub Date : 2025-01-29 DOI:10.1080/23279095.2025.2457999
Nitin Ahire
{"title":"EEG-derived brainwave patterns for depression diagnosis via hybrid machine learning and deep learning frameworks.","authors":"Nitin Ahire","doi":"10.1080/23279095.2025.2457999","DOIUrl":null,"url":null,"abstract":"<p><p>In the fields of engineering, science, technology, and medicine, artificial intelligence (AI) has made significant advancements. In particular, the application of AI techniques in medicine, such as machine learning (ML) and deep learning (DL), is rapidly growing and offers great potential for aiding physicians in the early diagnosis of illnesses. Depression, one of the most prevalent and debilitating mental illnesses, is projected to become the leading cause of disability worldwide by 2040. For early diagnosis, a patient-friendly, cost-effective approach based on readily observable and objective indicators is essential. The objective of this research is to develop machine learning and deep learning techniques that utilize electroencephalogram (EEG) signals to diagnose depression. Different statistical features were extracted from the EEG signals and fed into the models. Three classifiers were constructed: 1D Convolutional Neural Network (1DCNN), Support Vector Machine (SVM), and Logistic Regression (LR). The methods were tested on a dataset comprising EEG signals from 34 patients with Major Depressive Disorder (MDD) and 30 healthy subjects. The signals were collected under three distinct conditions: TASK, when the subject was performing a task; Eye Close (EC), when the subject's eyes were closed; and Eye Open (EO), when the subject's eyes were open. All three classifiers were applied to each of the three types of signals, resulting in nine (3 × 3) experiments. The results showed that TASK signals yielded the highest accuracies of 88.4%, 89.3%, and 90.21% for LR, SVM, and 1DCNN, respectively, compared to EC and EO signals. Additionally, the proposed methods outperformed some state-of-the-art approaches. These findings highlight the potential of EEG-based approaches for the clinical diagnosis of depression and provide promising avenues for further research. Additionally, the proposed methodology demonstrated statistically significant improvements in classification accuracy, with p-values < 0.05, ensuring robustness and reliability.</p>","PeriodicalId":51308,"journal":{"name":"Applied Neuropsychology-Adult","volume":" ","pages":"1-10"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Neuropsychology-Adult","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/23279095.2025.2457999","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the fields of engineering, science, technology, and medicine, artificial intelligence (AI) has made significant advancements. In particular, the application of AI techniques in medicine, such as machine learning (ML) and deep learning (DL), is rapidly growing and offers great potential for aiding physicians in the early diagnosis of illnesses. Depression, one of the most prevalent and debilitating mental illnesses, is projected to become the leading cause of disability worldwide by 2040. For early diagnosis, a patient-friendly, cost-effective approach based on readily observable and objective indicators is essential. The objective of this research is to develop machine learning and deep learning techniques that utilize electroencephalogram (EEG) signals to diagnose depression. Different statistical features were extracted from the EEG signals and fed into the models. Three classifiers were constructed: 1D Convolutional Neural Network (1DCNN), Support Vector Machine (SVM), and Logistic Regression (LR). The methods were tested on a dataset comprising EEG signals from 34 patients with Major Depressive Disorder (MDD) and 30 healthy subjects. The signals were collected under three distinct conditions: TASK, when the subject was performing a task; Eye Close (EC), when the subject's eyes were closed; and Eye Open (EO), when the subject's eyes were open. All three classifiers were applied to each of the three types of signals, resulting in nine (3 × 3) experiments. The results showed that TASK signals yielded the highest accuracies of 88.4%, 89.3%, and 90.21% for LR, SVM, and 1DCNN, respectively, compared to EC and EO signals. Additionally, the proposed methods outperformed some state-of-the-art approaches. These findings highlight the potential of EEG-based approaches for the clinical diagnosis of depression and provide promising avenues for further research. Additionally, the proposed methodology demonstrated statistically significant improvements in classification accuracy, with p-values < 0.05, ensuring robustness and reliability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Neuropsychology-Adult
Applied Neuropsychology-Adult CLINICAL NEUROLOGY-PSYCHOLOGY
CiteScore
4.50
自引率
11.80%
发文量
134
期刊介绍: pplied Neuropsychology-Adult publishes clinical neuropsychological articles concerning assessment, brain functioning and neuroimaging, neuropsychological treatment, and rehabilitation in adults. Full-length articles and brief communications are included. Case studies of adult patients carefully assessing the nature, course, or treatment of clinical neuropsychological dysfunctions in the context of scientific literature, are suitable. Review manuscripts addressing critical issues are encouraged. Preference is given to papers of clinical relevance to others in the field. All submitted manuscripts are subject to initial appraisal by the Editor-in-Chief, and, if found suitable for further considerations are peer reviewed by independent, anonymous expert referees. All peer review is single-blind and submission is online via ScholarOne Manuscripts.
期刊最新文献
Neuropsychological assessment by video teleconference in adults: A systematic review. A systematic review of the effectiveness of digital cognitive assessments of cognitive impairment in Parkinson's disease. Executive functioning in subjects post COVID-19 infection in Mexico. Normative data for the oral version of the symbol digit modalities test in the French-Quebec population aged 50 years and over. EEG-derived brainwave patterns for depression diagnosis via hybrid machine learning and deep learning frameworks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1