AI predictive models and advancements in microdissection testicular sperm extraction for non-obstructive azoospermia: a systematic scoping review.

IF 8.3 Q1 OBSTETRICS & GYNECOLOGY Human reproduction open Pub Date : 2024-11-21 eCollection Date: 2025-01-01 DOI:10.1093/hropen/hoae070
Hossein Jamalirad, Mahdie Jajroudi, Bahareh Khajehpour, Mohammad Ali Sadighi Gilani, Saeid Eslami, Marjan Sabbaghian, Hassan Vakili Arki
{"title":"AI predictive models and advancements in microdissection testicular sperm extraction for non-obstructive azoospermia: a systematic scoping review.","authors":"Hossein Jamalirad, Mahdie Jajroudi, Bahareh Khajehpour, Mohammad Ali Sadighi Gilani, Saeid Eslami, Marjan Sabbaghian, Hassan Vakili Arki","doi":"10.1093/hropen/hoae070","DOIUrl":null,"url":null,"abstract":"<p><strong>Study question: </strong>How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery?</p><p><strong>Summary answer: </strong>AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area.</p><p><strong>What is known already: </strong>Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established.</p><p><strong>Study design size duration: </strong>A comprehensive literature search was conducted following PRISMA-ScR guidelines, covering PubMed and Scopus databases from 2013 to 15 May 2024. Relevant English-language studies were identified using Medical Subject Headings (MeSH) terms. We also used PubMed's 'similar articles' and 'cited by' features for thorough bibliographic screening to ensure comprehensive coverage of relevant literature.</p><p><strong>Participants/materials setting methods: </strong>The review included studies on patients with NOA where AI-based models were used for predicting m-TESE outcomes, by incorporating clinical data, hormonal levels, histopathological evaluations, and genetic parameters. Various machine learning and deep learning techniques, including logistic regression, were employed. The Prediction Model Risk of Bias Assessment Tool (PROBAST) evaluated the bias in the studies, and their quality was assessed using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) guidelines, ensuring robust reporting standards and methodological rigor.</p><p><strong>Main results and the role of chance: </strong>Out of 427 screened articles, 45 met the inclusion criteria, with most using logistic regression and machine learning to predict m-TESE outcomes. AI-based models demonstrated strong potential by integrating clinical, hormonal, and biological factors. However, limitations of the studies included small sample sizes, legal barriers, and challenges in generalizability and validation. While some studies featured larger, multicenter designs, many were constrained by sample size. Most studies had a low risk of bias in participant selection and outcome determination, and two-thirds were rated as low risk for predictor assessment, but the analysis methods varied.</p><p><strong>Limitations reasons for caution: </strong>The limitations of this review include the heterogeneity of the included research, potential publication bias and reliance on only two databases (PubMed and Scopus), which may limit the scope of the findings. Additionally, the absence of a meta-analysis prevents quantitative assessment of the consistency of models. Despite this, the review offers valuable insights into AI predictive models for m-TESE in NOA.</p><p><strong>Wider implications of the findings: </strong>The review highlights the potential of advanced AI techniques in predicting successful sperm retrieval for NOA patients undergoing m-TESE. By integrating clinical, hormonal, histopathological, and genetic factors, AI models can enhance decision-making and improve patient outcomes, reducing the number of unsuccessful procedures. However, to further enhance the precision and reliability of AI predictions in reproductive medicine, future studies should address current limitations by incorporating larger sample sizes and conducting prospective validation trials. This continued research and development is crucial for strengthening the applicability of AI models and ensuring broader clinical adoption.</p><p><strong>Study funding/competing interests: </strong>The authors would like to acknowledge Mashhad University of Medical Sciences, Mashhad, Iran, for financial support (Grant ID: 4020802). The authors declare no competing interests.</p><p><strong>Registration number: </strong>N/A.</p>","PeriodicalId":73264,"journal":{"name":"Human reproduction open","volume":"2025 1","pages":"hoae070"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700607/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human reproduction open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/hropen/hoae070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Study question: How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery?

Summary answer: AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area.

What is known already: Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established.

Study design size duration: A comprehensive literature search was conducted following PRISMA-ScR guidelines, covering PubMed and Scopus databases from 2013 to 15 May 2024. Relevant English-language studies were identified using Medical Subject Headings (MeSH) terms. We also used PubMed's 'similar articles' and 'cited by' features for thorough bibliographic screening to ensure comprehensive coverage of relevant literature.

Participants/materials setting methods: The review included studies on patients with NOA where AI-based models were used for predicting m-TESE outcomes, by incorporating clinical data, hormonal levels, histopathological evaluations, and genetic parameters. Various machine learning and deep learning techniques, including logistic regression, were employed. The Prediction Model Risk of Bias Assessment Tool (PROBAST) evaluated the bias in the studies, and their quality was assessed using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) guidelines, ensuring robust reporting standards and methodological rigor.

Main results and the role of chance: Out of 427 screened articles, 45 met the inclusion criteria, with most using logistic regression and machine learning to predict m-TESE outcomes. AI-based models demonstrated strong potential by integrating clinical, hormonal, and biological factors. However, limitations of the studies included small sample sizes, legal barriers, and challenges in generalizability and validation. While some studies featured larger, multicenter designs, many were constrained by sample size. Most studies had a low risk of bias in participant selection and outcome determination, and two-thirds were rated as low risk for predictor assessment, but the analysis methods varied.

Limitations reasons for caution: The limitations of this review include the heterogeneity of the included research, potential publication bias and reliance on only two databases (PubMed and Scopus), which may limit the scope of the findings. Additionally, the absence of a meta-analysis prevents quantitative assessment of the consistency of models. Despite this, the review offers valuable insights into AI predictive models for m-TESE in NOA.

Wider implications of the findings: The review highlights the potential of advanced AI techniques in predicting successful sperm retrieval for NOA patients undergoing m-TESE. By integrating clinical, hormonal, histopathological, and genetic factors, AI models can enhance decision-making and improve patient outcomes, reducing the number of unsuccessful procedures. However, to further enhance the precision and reliability of AI predictions in reproductive medicine, future studies should address current limitations by incorporating larger sample sizes and conducting prospective validation trials. This continued research and development is crucial for strengthening the applicability of AI models and ensuring broader clinical adoption.

Study funding/competing interests: The authors would like to acknowledge Mashhad University of Medical Sciences, Mashhad, Iran, for financial support (Grant ID: 4020802). The authors declare no competing interests.

Registration number: N/A.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.50
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Paternal age and neonatal outcomes: a population-based cohort study. Clinical and ethical perspectives of ovarian stimulation and oocyte cryopreservation in adolescents: 6 years experience from a tertiary centre. FAP+ activated fibroblasts are detectable in the microenvironment of endometriosis and correlate with stroma composition and infiltrating CD8+ and CD68+ cells. Trial characteristics, geographic distribution, and selected methodological issues of 1425 infertility trials published from 2012 to 2023: a systematic review. Hormone receptor profile of ectopic and eutopic endometrium in adenomyosis: a systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1