Hybrid transformer-based model for mammogram classification by integrating prior and current images.

Medical physics Pub Date : 2025-01-30 DOI:10.1002/mp.17650
Afsana Ahsan Jeny, Sahand Hamzehei, Annie Jin, Stephen Andrew Baker, Tucker Van Rathe, Jun Bai, Clifford Yang, Sheida Nabavi
{"title":"Hybrid transformer-based model for mammogram classification by integrating prior and current images.","authors":"Afsana Ahsan Jeny, Sahand Hamzehei, Annie Jin, Stephen Andrew Baker, Tucker Van Rathe, Jun Bai, Clifford Yang, Sheida Nabavi","doi":"10.1002/mp.17650","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Breast cancer screening via mammography plays a crucial role in early detection, significantly impacting women's health outcomes worldwide. However, the manual analysis of mammographic images is time-consuming and requires specialized expertise, presenting substantial challenges in medical practice.</p><p><strong>Purpose: </strong>To address these challenges, we introduce a CNN-Transformer based model tailored for breast cancer classification through mammographic analysis. This model leverages both prior and current images to monitor temporal changes, aiming to enhance the efficiency and accuracy (ACC) of computer-aided diagnosis systems by mimicking the detailed examination process of radiologists.</p><p><strong>Methods: </strong>In this study, our proposed model incorporates a novel integration of a position-wise feedforward network and multi-head self-attention, enabling it to detect abnormal or cancerous changes in mammograms over time. Additionally, the model employs positional encoding and channel attention methods to accurately highlight critical spatial features, thus precisely differentiating between normal and cancerous tissues. Our methodology utilizes focal loss (FL) to precisely address challenging instances that are difficult to classify, reducing false negatives and false positives to improve diagnostic ACC.</p><p><strong>Results: </strong>We compared our model with eight baseline models; specifically, we utilized only current images for the single model ResNet50 while employing both prior and current images for the remaining models in terms of accuracy (ACC), sensitivity (SEN), precision (PRE), specificity (SPE), F1 score, and area under the curve (AUC). The results demonstrate that the proposed model outperforms the baseline models, achieving an ACC of 90.80%, SEN of 90.80%, PRE of 90.80%, SPE of 90.88%, an F1 score of 90.95%, and an AUC of 92.58%. The codes and related information are available at https://github.com/NabaviLab/PCTM.</p><p><strong>Conclusions: </strong>Our proposed CNN-Transformer model integrates both prior and current images, removes long-range dependencies, and enhances its capability for nuanced classification. The application of FL reduces false positive rate (FPR) and false negative rates (FNR), improving both SEN and SPE. Furthermore, the model achieves the lowest false discovery rate and FNR across various abnormalities, including masses, calcification, and architectural distortions (ADs). These low error rates highlight the model's reliability and underscore its potential to improve early breast cancer detection in clinical practice.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Breast cancer screening via mammography plays a crucial role in early detection, significantly impacting women's health outcomes worldwide. However, the manual analysis of mammographic images is time-consuming and requires specialized expertise, presenting substantial challenges in medical practice.

Purpose: To address these challenges, we introduce a CNN-Transformer based model tailored for breast cancer classification through mammographic analysis. This model leverages both prior and current images to monitor temporal changes, aiming to enhance the efficiency and accuracy (ACC) of computer-aided diagnosis systems by mimicking the detailed examination process of radiologists.

Methods: In this study, our proposed model incorporates a novel integration of a position-wise feedforward network and multi-head self-attention, enabling it to detect abnormal or cancerous changes in mammograms over time. Additionally, the model employs positional encoding and channel attention methods to accurately highlight critical spatial features, thus precisely differentiating between normal and cancerous tissues. Our methodology utilizes focal loss (FL) to precisely address challenging instances that are difficult to classify, reducing false negatives and false positives to improve diagnostic ACC.

Results: We compared our model with eight baseline models; specifically, we utilized only current images for the single model ResNet50 while employing both prior and current images for the remaining models in terms of accuracy (ACC), sensitivity (SEN), precision (PRE), specificity (SPE), F1 score, and area under the curve (AUC). The results demonstrate that the proposed model outperforms the baseline models, achieving an ACC of 90.80%, SEN of 90.80%, PRE of 90.80%, SPE of 90.88%, an F1 score of 90.95%, and an AUC of 92.58%. The codes and related information are available at https://github.com/NabaviLab/PCTM.

Conclusions: Our proposed CNN-Transformer model integrates both prior and current images, removes long-range dependencies, and enhances its capability for nuanced classification. The application of FL reduces false positive rate (FPR) and false negative rates (FNR), improving both SEN and SPE. Furthermore, the model achieves the lowest false discovery rate and FNR across various abnormalities, including masses, calcification, and architectural distortions (ADs). These low error rates highlight the model's reliability and underscore its potential to improve early breast cancer detection in clinical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-supervised arbitrary-scale super-angular resolution diffusion MRI reconstruction. Boosting 2D brain image registration via priors from large model. Comparison of secondary radiation dose between pencil beam scanning and scattered delivery for proton and VHEE radiotherapy. Quantifying photon counting detector (PCD) performance using PCD-CT images. Secondary cancer risk in head-and-neck cancer patients: A comparison of RBE-weighted proton therapy and photon therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1