Quantifying photon counting detector (PCD) performance using PCD-CT images.

Medical physics Pub Date : 2025-02-19 DOI:10.1002/mp.17701
Linying Zhan, Guang-Hong Chen, Ke Li
{"title":"Quantifying photon counting detector (PCD) performance using PCD-CT images.","authors":"Linying Zhan, Guang-Hong Chen, Ke Li","doi":"10.1002/mp.17701","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Photon counting detector CTs (PCD-CTs) have recently been introduced to clinical imaging. This development creates a new need for end-users to quantify and monitor the physical performance of PCDs. Traditionally, the characterization of PCD performance relied on detector counts, which are typically accessible to the manufacturer but are not usually available to clinical end-users.</p><p><strong>Purpose: </strong>The goal of this work was to develop a new method for quantifying PCD performance using reconstructed PCD-CT images, without requiring access to the PCD counts.</p><p><strong>Methods: </strong>The proposed method is based on a set of closed-form relationships that connect PCD-CT image noise, the PCD deadtime ( <math><semantics><mi>τ</mi> <annotation>$\\tau$</annotation></semantics> </math> ), and the zero-frequency detective quantum efficiency ( <math> <semantics><msub><mi>DQE</mi> <mn>0</mn></msub> <annotation>${\\rm DQE}_0$</annotation></semantics> </math> ) of PCDs. At a low tube current (mA) level, the mean output counts of the PCD were estimated by fitting the measured PCD-CT noise power spectrum (NPS) to a parametric model. <math> <semantics><msub><mi>DQE</mi> <mn>0</mn></msub> <annotation>${\\rm DQE}_0$</annotation></semantics> </math> was then calculated by normalizing the estimated mean detector counts to the expected input x-ray photon number. To estimate <math><semantics><mi>τ</mi> <annotation>$\\tau$</annotation></semantics> </math> , the image variance of PCD-CT was measured at different mA levels. A novel quantitative relationship between PCD-CT image variance, <math><semantics><mi>τ</mi> <annotation>$\\tau$</annotation></semantics> </math> , and mA was employed to estimate <math><semantics><mi>τ</mi> <annotation>$\\tau$</annotation></semantics> </math> through parametric fitting. The method was validated using both simulated and experimental PCD-CT data, covering a range of <math><semantics><mi>τ</mi> <annotation>$\\tau$</annotation></semantics> </math> , <math> <semantics><msub><mi>DQE</mi> <mn>0</mn></msub> <annotation>${\\rm DQE}_0$</annotation></semantics> </math> , and system geometries.</p><p><strong>Results: </strong>For the simulated curved-detector PCD-CT, the estimation errors for <math> <semantics><msub><mi>DQE</mi> <mn>0</mn></msub> <annotation>${\\rm DQE}_0$</annotation></semantics> </math> and deadtime were -3.7% and 0.5%, respectively. For the simulated collinear-detector PCD-CT, the estimation errors for <math> <semantics><msub><mi>DQE</mi> <mn>0</mn></msub> <annotation>${\\rm DQE}_0$</annotation></semantics> </math> and deadtime were -3.3% and -1.0%, respectively. For the experimental collinear-detector PCD-CT, the estimation errors for <math> <semantics><msub><mi>DQE</mi> <mn>0</mn></msub> <annotation>${\\rm DQE}_0$</annotation></semantics> </math> and deadtime were -2.6% and 1.6%, respectively.</p><p><strong>Conclusions: </strong>By analyzing the variance and NPS of PCD-CT images, <math> <semantics><msub><mi>DQE</mi> <mn>0</mn></msub> <annotation>${\\rm DQE}_0$</annotation></semantics> </math> and deadtime of scanner's PCD can be accurately estimated, without access to raw detector counts or projection data.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Photon counting detector CTs (PCD-CTs) have recently been introduced to clinical imaging. This development creates a new need for end-users to quantify and monitor the physical performance of PCDs. Traditionally, the characterization of PCD performance relied on detector counts, which are typically accessible to the manufacturer but are not usually available to clinical end-users.

Purpose: The goal of this work was to develop a new method for quantifying PCD performance using reconstructed PCD-CT images, without requiring access to the PCD counts.

Methods: The proposed method is based on a set of closed-form relationships that connect PCD-CT image noise, the PCD deadtime ( τ $\tau$ ), and the zero-frequency detective quantum efficiency ( DQE 0 ${\rm DQE}_0$ ) of PCDs. At a low tube current (mA) level, the mean output counts of the PCD were estimated by fitting the measured PCD-CT noise power spectrum (NPS) to a parametric model. DQE 0 ${\rm DQE}_0$ was then calculated by normalizing the estimated mean detector counts to the expected input x-ray photon number. To estimate τ $\tau$ , the image variance of PCD-CT was measured at different mA levels. A novel quantitative relationship between PCD-CT image variance, τ $\tau$ , and mA was employed to estimate τ $\tau$ through parametric fitting. The method was validated using both simulated and experimental PCD-CT data, covering a range of τ $\tau$ , DQE 0 ${\rm DQE}_0$ , and system geometries.

Results: For the simulated curved-detector PCD-CT, the estimation errors for DQE 0 ${\rm DQE}_0$ and deadtime were -3.7% and 0.5%, respectively. For the simulated collinear-detector PCD-CT, the estimation errors for DQE 0 ${\rm DQE}_0$ and deadtime were -3.3% and -1.0%, respectively. For the experimental collinear-detector PCD-CT, the estimation errors for DQE 0 ${\rm DQE}_0$ and deadtime were -2.6% and 1.6%, respectively.

Conclusions: By analyzing the variance and NPS of PCD-CT images, DQE 0 ${\rm DQE}_0$ and deadtime of scanner's PCD can be accurately estimated, without access to raw detector counts or projection data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
背景:光子计数探测器 CT(PCD-CT)最近被引入临床成像。这一发展为终端用户量化和监测 PCD 的物理性能带来了新的需求。传统上,PCD 性能的表征依赖于探测器计数,制造商通常可以获得探测器计数,但临床终端用户通常无法获得。目的:这项工作的目标是开发一种新方法,利用重建的 PCD-CT 图像量化 PCD 性能,而无需获得 PCD 计数:提出的方法基于一组闭式关系,这些关系将 PCD-CT 图像噪声、PCD 死区时间(τ $\tau$ )和 PCD 的零频探测量子效率(DQE 0 ${\rm DQE}_0$ )联系在一起。在低电子管电流(mA)水平下,通过将测得的 PCD-CT 噪声功率谱(NPS)拟合到参数模型中,估算出 PCD 的平均输出计数。 DQE 0 $\{rm DQE}_0$ 是通过将估计的探测器平均计数归一化为预期输入的 X 射线光子数来计算的。为了估算 τ $\tau$,测量了不同 mA 水平下 PCD-CT 的图像方差。PCD-CT 图像方差、τ $\tau$ 和 mA 之间的新型定量关系被用于通过参数拟合来估计 τ $\tau$ 。该方法使用模拟和实验 PCD-CT 数据进行了验证,涵盖了 τ $\tau$ 、DQE 0 ${\rm DQE}_0$ 和系统几何形状的范围:对于模拟的曲面探测器 PCD-CT,DQE 0 ${\rm DQE}_0$ 和死区时间的估计误差分别为 -3.7% 和 0.5%。对于模拟的平行探测器 PCD-CT,DQE 0 ${rm DQE}_0$ 和死区时间的估计误差分别为-3.3%和-1.0%。对于实验性的准直探测器 PCD-CT,DQE 0 ${rm DQE}_0$ 和死区时间的估计误差分别为-2.6%和 1.6%:通过分析 PCD-CT 图像的方差和 NPS,可以准确估计出扫描仪 PCD 的 DQE 0 ${\rm DQE}_0$ 和死区时间,而无需获取原始探测器计数或投影数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-supervised arbitrary-scale super-angular resolution diffusion MRI reconstruction. Boosting 2D brain image registration via priors from large model. Comparison of secondary radiation dose between pencil beam scanning and scattered delivery for proton and VHEE radiotherapy. Quantifying photon counting detector (PCD) performance using PCD-CT images. Secondary cancer risk in head-and-neck cancer patients: A comparison of RBE-weighted proton therapy and photon therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1