Zhewei Sun, Jianfeng Zhang, Chuning Wang, Jinhong Chen, Pei Li, Jiachun Su, Xiaogang Xu, Minggui Wang
{"title":"The pivotal role of IncFIB(Mar) plasmid in the emergence and spread of hypervirulent carbapenem-resistant <i>Klebsiella pneumoniae</i>.","authors":"Zhewei Sun, Jianfeng Zhang, Chuning Wang, Jinhong Chen, Pei Li, Jiachun Su, Xiaogang Xu, Minggui Wang","doi":"10.1126/sciadv.ado9097","DOIUrl":null,"url":null,"abstract":"<p><p>The hypervirulent carbapenem-resistant <i>Klebsiella pneumoniae</i> (hv-CRKP) poses a substantial challenge to the global health care. However, the mechanism behind its evolution and transmission remain elusive. Here, four virulence plasmid types were identified from 310 hv-CRKP isolates collected nationwide during 2017-2018, based on their aerobactin (<i>iuc</i> locus) lineage and IncFIB replicons. Notably, pIUC1-IncFIB(K)<sub>37</sub> and pIUC1-IncFIB(Mar), representing two epidemic virulence plasmids in Asia and Europe, respectively, accounted for >90% of the hv-CRKP episodes. Analysis of 494 <i>K. pneumoniae</i> isolates (376 from 2010-2013; 118 from 2017-2018) and 2578 public <i>K. pneumoniae</i> genomes indicated the notable role of IncFIB(Mar) plasmids in the hv-CRKP emergence and spread. Conjugation assays showed the helper IncFIB(Mar) plasmid could efficiently transfer into a hypervirulent strain and uniquely retromobilize with pIUC1-IncFIB(K)<sub>37</sub> back into CRKP. Thereafter, the IncFIB(Mar) plasmid either lost rapidly or recombined with pIUC1-IncFIB(K)<sub>37</sub>, generating the hybrid pIUC1-IncFIB(Mar) plasmid. Our findings elucidated formation, evolution, and dissemination trajectories of the two major hv-CRKP strains in different regions.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 5","pages":"eado9097"},"PeriodicalIF":11.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784837/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ado9097","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) poses a substantial challenge to the global health care. However, the mechanism behind its evolution and transmission remain elusive. Here, four virulence plasmid types were identified from 310 hv-CRKP isolates collected nationwide during 2017-2018, based on their aerobactin (iuc locus) lineage and IncFIB replicons. Notably, pIUC1-IncFIB(K)37 and pIUC1-IncFIB(Mar), representing two epidemic virulence plasmids in Asia and Europe, respectively, accounted for >90% of the hv-CRKP episodes. Analysis of 494 K. pneumoniae isolates (376 from 2010-2013; 118 from 2017-2018) and 2578 public K. pneumoniae genomes indicated the notable role of IncFIB(Mar) plasmids in the hv-CRKP emergence and spread. Conjugation assays showed the helper IncFIB(Mar) plasmid could efficiently transfer into a hypervirulent strain and uniquely retromobilize with pIUC1-IncFIB(K)37 back into CRKP. Thereafter, the IncFIB(Mar) plasmid either lost rapidly or recombined with pIUC1-IncFIB(K)37, generating the hybrid pIUC1-IncFIB(Mar) plasmid. Our findings elucidated formation, evolution, and dissemination trajectories of the two major hv-CRKP strains in different regions.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.