{"title":"Bio-plausible reconfigurable spiking neuron for neuromorphic computing.","authors":"Yu Xiao, Yize Liu, Bihua Zhang, Peng Chen, Huaze Zhu, Enhui He, Jiayi Zhao, Wenju Huo, Xiaofei Jin, Xumeng Zhang, Hao Jiang, De Ma, Qian Zheng, Huajin Tang, Peng Lin, Wei Kong, Gang Pan","doi":"10.1126/sciadv.adr6733","DOIUrl":null,"url":null,"abstract":"<p><p>Biological neurons use diverse temporal expressions of spikes to achieve efficient communication and modulation of neural activities. Nonetheless, existing neuromorphic computing systems mainly use simplified neuron models with limited spiking behaviors due to high cost of emulating these biological spike patterns. Here, we propose a compact reconfigurable neuron design using the intrinsic dynamics of a NbO<sub>2</sub>-based spiking unit and excellent tunability in an electrochemical memory (ECRAM) to emulate the fast-slow dynamics in a bio-plausible neuron. The resistance of the ECRAM was effective in tuning the temporal dynamics of the membrane potential, contributing to flexible reconfiguration of various bio-plausible firing modes, such as phasic and burst spiking, and exhibiting adaptive spiking behaviors in changing environment. We used the bio-plausible neuron model to build spiking neural networks with bursting neurons and demonstrated improved classification accuracies over simplified models, showing great promises for use in more bio-plausible neuromorphic computing systems.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 6","pages":"eadr6733"},"PeriodicalIF":11.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11797559/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr6733","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Biological neurons use diverse temporal expressions of spikes to achieve efficient communication and modulation of neural activities. Nonetheless, existing neuromorphic computing systems mainly use simplified neuron models with limited spiking behaviors due to high cost of emulating these biological spike patterns. Here, we propose a compact reconfigurable neuron design using the intrinsic dynamics of a NbO2-based spiking unit and excellent tunability in an electrochemical memory (ECRAM) to emulate the fast-slow dynamics in a bio-plausible neuron. The resistance of the ECRAM was effective in tuning the temporal dynamics of the membrane potential, contributing to flexible reconfiguration of various bio-plausible firing modes, such as phasic and burst spiking, and exhibiting adaptive spiking behaviors in changing environment. We used the bio-plausible neuron model to build spiking neural networks with bursting neurons and demonstrated improved classification accuracies over simplified models, showing great promises for use in more bio-plausible neuromorphic computing systems.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.