Monoaminergic neurotransmitters are bimodal effectors of tau aggregation.

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2025-01-31 DOI:10.1126/sciadv.adr8055
Xinmin Chang, Amanda M Tse, Marina Fayzullina, Angela Albanese, Minchan Kim, Conner F Wang, Zipeng Zheng, Ruchira V Joshi, Christopher K Williams, Shino D Magaki, Harry V Vinters, Jeremy O Jones, Ian S Haworth, Paul M Seidler
{"title":"Monoaminergic neurotransmitters are bimodal effectors of tau aggregation.","authors":"Xinmin Chang, Amanda M Tse, Marina Fayzullina, Angela Albanese, Minchan Kim, Conner F Wang, Zipeng Zheng, Ruchira V Joshi, Christopher K Williams, Shino D Magaki, Harry V Vinters, Jeremy O Jones, Ian S Haworth, Paul M Seidler","doi":"10.1126/sciadv.adr8055","DOIUrl":null,"url":null,"abstract":"<p><p>Neurotransmitters (NTs) mediate trans-synaptic signaling, and disturbances in their levels are linked to aging and brain disorders. Here, we ascribe an additional function for NTs in mediating intracellular protein aggregation by interaction with cytosolic protein fibrils. Cell-based seeding experiments revealed monoaminergic NTs as inhibitors of tau. Seeding is a disease-relevant mechanism involving catalysis by fibrils, leading to the aggregation of proteins in Alzheimer's disease and other neurodegenerative diseases. Chemotyping small molecules with varied backbone structures revealed determinants of aggregation inhibitors and catalysts. Among those identified were monoaminergic NTs. Dose titrations revealed bimodal effects indicative of fibril disaggregation, with aggregation catalysis occurring at low ratios of NTs and inhibited seeding ensuing at higher concentrations. Bimodal effects by NTs extend from in vitro systems to dopaminergic neurons, suggesting that pharmacotherapies that modify intracellular NT levels could shape the neuronal protein aggregation environment.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 5","pages":"eadr8055"},"PeriodicalIF":11.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784839/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr8055","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neurotransmitters (NTs) mediate trans-synaptic signaling, and disturbances in their levels are linked to aging and brain disorders. Here, we ascribe an additional function for NTs in mediating intracellular protein aggregation by interaction with cytosolic protein fibrils. Cell-based seeding experiments revealed monoaminergic NTs as inhibitors of tau. Seeding is a disease-relevant mechanism involving catalysis by fibrils, leading to the aggregation of proteins in Alzheimer's disease and other neurodegenerative diseases. Chemotyping small molecules with varied backbone structures revealed determinants of aggregation inhibitors and catalysts. Among those identified were monoaminergic NTs. Dose titrations revealed bimodal effects indicative of fibril disaggregation, with aggregation catalysis occurring at low ratios of NTs and inhibited seeding ensuing at higher concentrations. Bimodal effects by NTs extend from in vitro systems to dopaminergic neurons, suggesting that pharmacotherapies that modify intracellular NT levels could shape the neuronal protein aggregation environment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Dispersive heterodyne cavity ring-down spectroscopy exploiting eigenmode frequencies for high-fidelity measurements. Dog skull shape challenges assumptions of performance specialization from selective breeding. Editorial Retraction. Epstein-Barr virus-driven cardiolipin synthesis sustains metabolic remodeling during B cell transformation. Exploring the boundary of quantum correlations with a time-domain optical processor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1