Lu-Kai Qiao , Liang-Ying He , Fang-Zhou Gao , Zheng Huang , Hong Bai , Yi-Chun Wang , Yi-Jing Shi , You-Sheng Liu , Jian-Liang Zhao , Guang-Guo Ying
{"title":"Deciphering key traits and dissemination of antibiotic resistance genes and degradation genes in pharmaceutical wastewater receiving environments","authors":"Lu-Kai Qiao , Liang-Ying He , Fang-Zhou Gao , Zheng Huang , Hong Bai , Yi-Chun Wang , Yi-Jing Shi , You-Sheng Liu , Jian-Liang Zhao , Guang-Guo Ying","doi":"10.1016/j.watres.2025.123241","DOIUrl":null,"url":null,"abstract":"<div><div>Discharge of pharmaceutical wastewater significantly affects the receiving environments. However, the development of antibiotic resistance and microbial enzymatic degradation in wastewater-receiving soils and rivers remains unclear. This study investigated a sulfonamide-producing factory to explore the distribution of antibiotic resistance genes (ARGs) in the receiving river and soil environments (0–100 cm depth), and the potential hosts of <em>sadABC</em> genes (sulfonamide-degrading genes) as well as their phylogenetic characterization. We identified plentiful ARGs (28 types and 1065 subtypes) and their hosts (30 phyla and 340 MAGs) in three media (surface water, sediment, and soil). Results indicated that the abundances of total resistome in water and sediment of receiving river (0–1.5 km) were higher than the global river resistome median levels. Wastewater significantly affected the soil resistome, leading to an average 5-fold increase in ARG abundance, and a 22-fold enrichment of sulfonamide ARGs. The abundance and diversity of soil resistome decreased significantly with depth, and the abundance was below the global soil resistome median level at the depth greater than 20 cm. The detection of 17 risk rank I ARGs and the enrichment of multidrug-resistant pathogenic bacteria in soil and river highlighted the resistance risks in the environments. Notably, 73 <em>sadABC</em>-carrying contigs were detected, which were mainly hosted by Microbacteriaceae and some other previously unreported bacteria, such as Mycobacteriaceae spp. The findings offer valuable insights into antimicrobial resistance (AMR) risk assessment and the bioremediation of sulfonamides pollution in the environment affected by pharmaceutical wastewater.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"275 ","pages":"Article 123241"},"PeriodicalIF":11.4000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425001551","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Discharge of pharmaceutical wastewater significantly affects the receiving environments. However, the development of antibiotic resistance and microbial enzymatic degradation in wastewater-receiving soils and rivers remains unclear. This study investigated a sulfonamide-producing factory to explore the distribution of antibiotic resistance genes (ARGs) in the receiving river and soil environments (0–100 cm depth), and the potential hosts of sadABC genes (sulfonamide-degrading genes) as well as their phylogenetic characterization. We identified plentiful ARGs (28 types and 1065 subtypes) and their hosts (30 phyla and 340 MAGs) in three media (surface water, sediment, and soil). Results indicated that the abundances of total resistome in water and sediment of receiving river (0–1.5 km) were higher than the global river resistome median levels. Wastewater significantly affected the soil resistome, leading to an average 5-fold increase in ARG abundance, and a 22-fold enrichment of sulfonamide ARGs. The abundance and diversity of soil resistome decreased significantly with depth, and the abundance was below the global soil resistome median level at the depth greater than 20 cm. The detection of 17 risk rank I ARGs and the enrichment of multidrug-resistant pathogenic bacteria in soil and river highlighted the resistance risks in the environments. Notably, 73 sadABC-carrying contigs were detected, which were mainly hosted by Microbacteriaceae and some other previously unreported bacteria, such as Mycobacteriaceae spp. The findings offer valuable insights into antimicrobial resistance (AMR) risk assessment and the bioremediation of sulfonamides pollution in the environment affected by pharmaceutical wastewater.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.