Xiangyu He , Wenming Yan , Xiang Chen , Yan Wang , Minjuan Li , Qi Li , Junliang Jin , Zhongbo Yu , Tingfeng Wu
{"title":"The transition from macrophyte-dominated to algae-dominated lake systems enhances arsenic release from sediments","authors":"Xiangyu He , Wenming Yan , Xiang Chen , Yan Wang , Minjuan Li , Qi Li , Junliang Jin , Zhongbo Yu , Tingfeng Wu","doi":"10.1016/j.watres.2025.123233","DOIUrl":null,"url":null,"abstract":"<div><div>Declining macrophytes in eutrophic lakes are altering material cycling in sediments. However, the transformation of arsenic (As) in response to these changes remains poorly understood. In this study, high-resolution dialysis was used to measure dissolved As in sediments from macrophyte-dominated (MD) and algae-dominated (AD) zones across different seasons. The relationship between sedimentary As fractionation and environmental variations was analyzed, and the As transformation process was explored. Results showed that the shift from macrophyte- to algae-dominated zones enhanced As release in sediments. Dissolved As in pore water of AD peaked at 120.36 μg/L in summer, exhibiting the highest release intensity, while MD showed a notable As release profile in spring (34.92 μg/L). In spring, decomposition and acidification of macrophyte residues, along with organic matter (OM) complexation, promoted the release of adsorbed As in MD. In contrast, reduction and dissolution of iron (Fe) oxides, along with competition for adsorption sites by dissolved phosphorus (P), drove As release in AD during summer. The high humification and low redox potential in MD sediments in summer promoted As-S co-precipitation, leading to As sequestration instead of release, this contrasts with the common view that warmer temperatures favor As release from sediments. The conversion from macrophytes to algae in eutrophic lakes may exacerbate the risk of As release, warranting further investigation.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"276 ","pages":"Article 123233"},"PeriodicalIF":11.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425001472","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Declining macrophytes in eutrophic lakes are altering material cycling in sediments. However, the transformation of arsenic (As) in response to these changes remains poorly understood. In this study, high-resolution dialysis was used to measure dissolved As in sediments from macrophyte-dominated (MD) and algae-dominated (AD) zones across different seasons. The relationship between sedimentary As fractionation and environmental variations was analyzed, and the As transformation process was explored. Results showed that the shift from macrophyte- to algae-dominated zones enhanced As release in sediments. Dissolved As in pore water of AD peaked at 120.36 μg/L in summer, exhibiting the highest release intensity, while MD showed a notable As release profile in spring (34.92 μg/L). In spring, decomposition and acidification of macrophyte residues, along with organic matter (OM) complexation, promoted the release of adsorbed As in MD. In contrast, reduction and dissolution of iron (Fe) oxides, along with competition for adsorption sites by dissolved phosphorus (P), drove As release in AD during summer. The high humification and low redox potential in MD sediments in summer promoted As-S co-precipitation, leading to As sequestration instead of release, this contrasts with the common view that warmer temperatures favor As release from sediments. The conversion from macrophytes to algae in eutrophic lakes may exacerbate the risk of As release, warranting further investigation.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.