Hooralain Bushnaq, Sisi Pu, Tom Burton, Julio Rodriguez-Andres, Julio Carrera Montoya, Jason Mackenzie, Catherine Munro, Giovanni Palmisano, Srinivas Mettu, James Mcelhinney, Ludovic F. Dumée
{"title":"Visible light photosensitised cross-flow microfiltration membrane reactors for managing microplastic-contaminated bio-effluents","authors":"Hooralain Bushnaq, Sisi Pu, Tom Burton, Julio Rodriguez-Andres, Julio Carrera Montoya, Jason Mackenzie, Catherine Munro, Giovanni Palmisano, Srinivas Mettu, James Mcelhinney, Ludovic F. Dumée","doi":"10.1016/j.watres.2025.123317","DOIUrl":null,"url":null,"abstract":"The demand for advanced water treatment solutions necessitates the development of multifunctional, photodynamically active membranes. Phthalocyanines (Pcs), a class of organic photosensitizers, offer significant potential for enhancing treatment efficacy through photodynamic activity. This study reports the development of Pc-modified polymeric microfiltration membranes as visible-light-responsive, multifunctional membrane reactors with enhanced photodynamic and filtration properties. Cobalt phthalocyanine (CoPc), zinc phthalocyanine (ZnPc), tetra-amino zinc phthalocyanine (TAZnPc), and tetra-sulfonated aluminum phthalocyanine (TSAlPc) were integrated into the membranes, imparting notable changes in morphology, surface wettability, and chemical functionality. Characterization revealed improvements in optical responsiveness and surface properties that contributed to robust photodynamic and filtration performance. Static photodynamic evaluations demonstrated high efficacy, with ZnPc mixed matrix membrane (MMM) achieving superior dye degradation and TSAlPc grafted membrane (GM) yielding significant bacterial inactivation. Filtration trials confirmed ZnPc MMM's biofouling resistance and permeance stability, reaching 99.97% rejection of bio-fouled microplastics (MPs) and a 45% permeance enhancement under irradiation. Virus filtration results demonstrated TSAlPc MMM's viral retention efficacy, achieving a 2.05-log reduction against Influenza A virus. These findings underscore the potential of Pc-functionalized membranes as promising candidates for advanced water treatment applications, offering robust contaminant rejection, biofouling control, and broad-spectrum antimicrobial efficacy in a single, multifunctional platform.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"64 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123317","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for advanced water treatment solutions necessitates the development of multifunctional, photodynamically active membranes. Phthalocyanines (Pcs), a class of organic photosensitizers, offer significant potential for enhancing treatment efficacy through photodynamic activity. This study reports the development of Pc-modified polymeric microfiltration membranes as visible-light-responsive, multifunctional membrane reactors with enhanced photodynamic and filtration properties. Cobalt phthalocyanine (CoPc), zinc phthalocyanine (ZnPc), tetra-amino zinc phthalocyanine (TAZnPc), and tetra-sulfonated aluminum phthalocyanine (TSAlPc) were integrated into the membranes, imparting notable changes in morphology, surface wettability, and chemical functionality. Characterization revealed improvements in optical responsiveness and surface properties that contributed to robust photodynamic and filtration performance. Static photodynamic evaluations demonstrated high efficacy, with ZnPc mixed matrix membrane (MMM) achieving superior dye degradation and TSAlPc grafted membrane (GM) yielding significant bacterial inactivation. Filtration trials confirmed ZnPc MMM's biofouling resistance and permeance stability, reaching 99.97% rejection of bio-fouled microplastics (MPs) and a 45% permeance enhancement under irradiation. Virus filtration results demonstrated TSAlPc MMM's viral retention efficacy, achieving a 2.05-log reduction against Influenza A virus. These findings underscore the potential of Pc-functionalized membranes as promising candidates for advanced water treatment applications, offering robust contaminant rejection, biofouling control, and broad-spectrum antimicrobial efficacy in a single, multifunctional platform.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.