Intensification of Alkaline Electrolyzer with Improved Two‑Phase Flow

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2025-02-01 DOI:10.1002/aenm.202405285
Franz Egert, Dirk Ullmer, Sven Marx, Ehsan Taghizadeh, Tobias Morawietz, Martina Gerle, Thi Anh Le, Lucia Paula Campo Schneider, Indro Shubir Biswas, Richard E. Wirz, Philipp Spieth, Tonja Marquard‐Möllenstedt, Andreas Brinner, Ricardo Faccio, Luciana Fernández‐Werner, Martín Esteves, Fatemeh Razmjooei, Syed Asif Ansar
{"title":"Intensification of Alkaline Electrolyzer with Improved Two‑Phase Flow","authors":"Franz Egert, Dirk Ullmer, Sven Marx, Ehsan Taghizadeh, Tobias Morawietz, Martina Gerle, Thi Anh Le, Lucia Paula Campo Schneider, Indro Shubir Biswas, Richard E. Wirz, Philipp Spieth, Tonja Marquard‐Möllenstedt, Andreas Brinner, Ricardo Faccio, Luciana Fernández‐Werner, Martín Esteves, Fatemeh Razmjooei, Syed Asif Ansar","doi":"10.1002/aenm.202405285","DOIUrl":null,"url":null,"abstract":"Green hydrogen produced through water electrolysis offers a promising pathway to global decarbonization. Among various electrolyzers, alkaline water electrolysis (AWE) is the most established and commercially mature. To reduce the cost of hydrogen production from AWE, it is crucial to increase operational current density while maintaining or lowering voltage to increase hydrogen yield and reduce energy consumption. Such efforts are focused on reducing the ohmic resistance at high current densities through the implementation of alkaline membranes. However, this work underlines that the ohmic resistance at high current densities is also influenced by the losses associated with the evolution of bubbles at the electrode surface and two‐phase mass transfer. This is shown by investigating the impact of tortuosity and bubble point of porous electrodes on AWE performance. Low‐tortuosity porous nickel electrodes are fabricated and analyzed for their ability to reduce capillary pressure and bubble point, resulting in lower energy losses and improved efficiency. The cell reaches an industrially appealing relevant current density of 2 A cm<jats:sup>−2</jats:sup> at ≈2 V. Besides test in single cells, the advantageous effect of these low tortuosity porous nickel electrodes are also validated in a kW‐class AWE stack, confirming their effectiveness in enhancing overall system performance.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"20 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202405285","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Green hydrogen produced through water electrolysis offers a promising pathway to global decarbonization. Among various electrolyzers, alkaline water electrolysis (AWE) is the most established and commercially mature. To reduce the cost of hydrogen production from AWE, it is crucial to increase operational current density while maintaining or lowering voltage to increase hydrogen yield and reduce energy consumption. Such efforts are focused on reducing the ohmic resistance at high current densities through the implementation of alkaline membranes. However, this work underlines that the ohmic resistance at high current densities is also influenced by the losses associated with the evolution of bubbles at the electrode surface and two‐phase mass transfer. This is shown by investigating the impact of tortuosity and bubble point of porous electrodes on AWE performance. Low‐tortuosity porous nickel electrodes are fabricated and analyzed for their ability to reduce capillary pressure and bubble point, resulting in lower energy losses and improved efficiency. The cell reaches an industrially appealing relevant current density of 2 A cm−2 at ≈2 V. Besides test in single cells, the advantageous effect of these low tortuosity porous nickel electrodes are also validated in a kW‐class AWE stack, confirming their effectiveness in enhancing overall system performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Intensification of Alkaline Electrolyzer with Improved Two‑Phase Flow Engineering of Lignocellulose Pulp Binder for Ah‐Scale Lithium–Sulfur Batteries Covalent Organic Framework Membranes with Spatially Aligned Ionic Sites Achieve Record Thermo‐Osmotic Output Power Density Fluorinated Functional Units for Li+ Flux Homogenization in Silica Framework‐Based Zwitterionic Single Ion Conductors for Stable Lithium Metal Batteries In Operando Visualization of Charge Transfer Dynamics in Transition Metal Compounds on Water Splitting Photoanodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1