Franz Egert, Dirk Ullmer, Sven Marx, Ehsan Taghizadeh, Tobias Morawietz, Martina Gerle, Thi Anh Le, Lucia Paula Campo Schneider, Indro Shubir Biswas, Richard E. Wirz, Philipp Spieth, Tonja Marquard‐Möllenstedt, Andreas Brinner, Ricardo Faccio, Luciana Fernández‐Werner, Martín Esteves, Fatemeh Razmjooei, Syed Asif Ansar
{"title":"Intensification of Alkaline Electrolyzer with Improved Two‑Phase Flow","authors":"Franz Egert, Dirk Ullmer, Sven Marx, Ehsan Taghizadeh, Tobias Morawietz, Martina Gerle, Thi Anh Le, Lucia Paula Campo Schneider, Indro Shubir Biswas, Richard E. Wirz, Philipp Spieth, Tonja Marquard‐Möllenstedt, Andreas Brinner, Ricardo Faccio, Luciana Fernández‐Werner, Martín Esteves, Fatemeh Razmjooei, Syed Asif Ansar","doi":"10.1002/aenm.202405285","DOIUrl":null,"url":null,"abstract":"Green hydrogen produced through water electrolysis offers a promising pathway to global decarbonization. Among various electrolyzers, alkaline water electrolysis (AWE) is the most established and commercially mature. To reduce the cost of hydrogen production from AWE, it is crucial to increase operational current density while maintaining or lowering voltage to increase hydrogen yield and reduce energy consumption. Such efforts are focused on reducing the ohmic resistance at high current densities through the implementation of alkaline membranes. However, this work underlines that the ohmic resistance at high current densities is also influenced by the losses associated with the evolution of bubbles at the electrode surface and two‐phase mass transfer. This is shown by investigating the impact of tortuosity and bubble point of porous electrodes on AWE performance. Low‐tortuosity porous nickel electrodes are fabricated and analyzed for their ability to reduce capillary pressure and bubble point, resulting in lower energy losses and improved efficiency. The cell reaches an industrially appealing relevant current density of 2 A cm<jats:sup>−2</jats:sup> at ≈2 V. Besides test in single cells, the advantageous effect of these low tortuosity porous nickel electrodes are also validated in a kW‐class AWE stack, confirming their effectiveness in enhancing overall system performance.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"20 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202405285","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Green hydrogen produced through water electrolysis offers a promising pathway to global decarbonization. Among various electrolyzers, alkaline water electrolysis (AWE) is the most established and commercially mature. To reduce the cost of hydrogen production from AWE, it is crucial to increase operational current density while maintaining or lowering voltage to increase hydrogen yield and reduce energy consumption. Such efforts are focused on reducing the ohmic resistance at high current densities through the implementation of alkaline membranes. However, this work underlines that the ohmic resistance at high current densities is also influenced by the losses associated with the evolution of bubbles at the electrode surface and two‐phase mass transfer. This is shown by investigating the impact of tortuosity and bubble point of porous electrodes on AWE performance. Low‐tortuosity porous nickel electrodes are fabricated and analyzed for their ability to reduce capillary pressure and bubble point, resulting in lower energy losses and improved efficiency. The cell reaches an industrially appealing relevant current density of 2 A cm−2 at ≈2 V. Besides test in single cells, the advantageous effect of these low tortuosity porous nickel electrodes are also validated in a kW‐class AWE stack, confirming their effectiveness in enhancing overall system performance.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.