Microcracking in additively manufactured tungsten: Experiment and a nano-micro-macro multiscale model

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Plasticity Pub Date : 2025-01-31 DOI:10.1016/j.ijplas.2025.104264
Zhun Liang, Junhao Wu, Changmeng Liu, Yinan Cui
{"title":"Microcracking in additively manufactured tungsten: Experiment and a nano-micro-macro multiscale model","authors":"Zhun Liang, Junhao Wu, Changmeng Liu, Yinan Cui","doi":"10.1016/j.ijplas.2025.104264","DOIUrl":null,"url":null,"abstract":"Microcracking is a prevalent and critical issue in additively manufactured tungsten, significantly restricting its safety-critical engineering applications. Till now, most of our current knowledge about microcracking is based on the observation after additive manufacturing (AM) processing, the real-time evolution of microcracking is still largely unexplored, which is challenged by the complex multi-physics and multiscale nature of AM. To gain deeper insights, a multiscale model is developed in the current work, which integrates a multiphysics thermal-fluid model to consider the solidification process and the evolution of temperature, a crystal plasticity model to explore the evolution of dislocations and stress, as well as an atomistic simulation informed cohesive zone model to consider the microcracking at grain boundary (GB). The simulation results show great agreement with <em>in-situ</em> and <em>ex-situ</em> AM experiments of tungsten. The real-time microcracking evolution at GB in the grain-size scale is captured. It is found that the transverse microcracks that traverse the entire GB typically form after multiple scan tracks. A phase diagram is obtained to correlate microcrack density with scanning speed and power. The effect of non-Schmid effect, GB strength and substrate preheating are also systematically analyzed. This work advances the understanding of microcracking mechanisms in AM, offering valuable guidance for improving the fabrication process to mitigate microcrack formation.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"121 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2025.104264","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microcracking is a prevalent and critical issue in additively manufactured tungsten, significantly restricting its safety-critical engineering applications. Till now, most of our current knowledge about microcracking is based on the observation after additive manufacturing (AM) processing, the real-time evolution of microcracking is still largely unexplored, which is challenged by the complex multi-physics and multiscale nature of AM. To gain deeper insights, a multiscale model is developed in the current work, which integrates a multiphysics thermal-fluid model to consider the solidification process and the evolution of temperature, a crystal plasticity model to explore the evolution of dislocations and stress, as well as an atomistic simulation informed cohesive zone model to consider the microcracking at grain boundary (GB). The simulation results show great agreement with in-situ and ex-situ AM experiments of tungsten. The real-time microcracking evolution at GB in the grain-size scale is captured. It is found that the transverse microcracks that traverse the entire GB typically form after multiple scan tracks. A phase diagram is obtained to correlate microcrack density with scanning speed and power. The effect of non-Schmid effect, GB strength and substrate preheating are also systematically analyzed. This work advances the understanding of microcracking mechanisms in AM, offering valuable guidance for improving the fabrication process to mitigate microcrack formation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
期刊最新文献
Enhancing work hardening through tuning TRIP by nano-precipitates in maraging stainless steels Microcracking in additively manufactured tungsten: Experiment and a nano-micro-macro multiscale model Thermodynamically consistent damage evolution model coupled with rate-dependent crystal plasticity: Application to high-strength low alloy steel at various strain rates Role of face centered cubic/body centered cubic phase boundary crystallography on void growth Effect of vanadium microalloying on the deformation behavior and strain hardening of a medium Mn steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1