Accurate semantic segmentation of very high-resolution remote sensing images considering feature state sequences: From benchmark datasets to urban applications
Zijie Wang , Jizheng Yi , Aibin Chen , Lijiang Chen , Hui Lin , Kai Xu
{"title":"Accurate semantic segmentation of very high-resolution remote sensing images considering feature state sequences: From benchmark datasets to urban applications","authors":"Zijie Wang , Jizheng Yi , Aibin Chen , Lijiang Chen , Hui Lin , Kai Xu","doi":"10.1016/j.isprsjprs.2025.01.017","DOIUrl":null,"url":null,"abstract":"<div><div>Very High-Resolution (VHR) urban remote sensing images segmentation is widely used in ecological environmental protection, urban dynamic monitoring, fine urban management and other related fields. However, the large-scale variation and discrete distribution of objects in VHR images presents a significant challenge to accurate segmentation. The existing studies have primarily concentrated on the internal correlations within a single features, while overlooking the inherent sequential relationships across different feature state. In this paper, a novel Urban Spatial Segmentation Framework (UrbanSSF) is proposed, which fully considers the connections between feature states at different phases. Specifically, the Feature State Interaction (FSI) Mamba with powerful sequence modeling capabilities is designed based on state space modules. It effectively facilitates interactions between the information across different features. Given the disparate semantic information and spatial details of features at different scales, a Global Semantic Enhancer (GSE) module and a Spatial Interactive Attention (SIA) mechanism are designed. The GSE module operates on the high-level features, while the SIA mechanism processes the middle and low-level features. To address the computational challenges of large-scale dense feature fusion, a Channel Space Reconstruction (CSR) algorithm is proposed. This algorithm effectively reduces the computational burden while ensuring efficient processing and maintaining accuracy. In addition, the lightweight UrbanSSF-T, the efficient UrbanSSF-S and the accurate UrbanSSF-L are designed to meet different application requirements in urban scenarios. Comprehensive experiments on the UAVid, ISPRS Vaihingen and Potsdam datasets validate the superior performance of UrbanSSF series. Especially, the UrbanSSF-L achieves a mean intersection over union of 71.0% on the UAVid dataset. Code is available at <span><span>https://github.com/KotlinWang/UrbanSSF</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"220 ","pages":"Pages 824-840"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271625000176","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Very High-Resolution (VHR) urban remote sensing images segmentation is widely used in ecological environmental protection, urban dynamic monitoring, fine urban management and other related fields. However, the large-scale variation and discrete distribution of objects in VHR images presents a significant challenge to accurate segmentation. The existing studies have primarily concentrated on the internal correlations within a single features, while overlooking the inherent sequential relationships across different feature state. In this paper, a novel Urban Spatial Segmentation Framework (UrbanSSF) is proposed, which fully considers the connections between feature states at different phases. Specifically, the Feature State Interaction (FSI) Mamba with powerful sequence modeling capabilities is designed based on state space modules. It effectively facilitates interactions between the information across different features. Given the disparate semantic information and spatial details of features at different scales, a Global Semantic Enhancer (GSE) module and a Spatial Interactive Attention (SIA) mechanism are designed. The GSE module operates on the high-level features, while the SIA mechanism processes the middle and low-level features. To address the computational challenges of large-scale dense feature fusion, a Channel Space Reconstruction (CSR) algorithm is proposed. This algorithm effectively reduces the computational burden while ensuring efficient processing and maintaining accuracy. In addition, the lightweight UrbanSSF-T, the efficient UrbanSSF-S and the accurate UrbanSSF-L are designed to meet different application requirements in urban scenarios. Comprehensive experiments on the UAVid, ISPRS Vaihingen and Potsdam datasets validate the superior performance of UrbanSSF series. Especially, the UrbanSSF-L achieves a mean intersection over union of 71.0% on the UAVid dataset. Code is available at https://github.com/KotlinWang/UrbanSSF.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.