{"title":"Towards the application of nature's catalytic nanomachines: Cellulosomes in 2nd generation biofuel production","authors":"Maša Vodovnik, Nataša Lindič","doi":"10.1016/j.biotechadv.2025.108523","DOIUrl":null,"url":null,"abstract":"Cellulosomes are highly efficient, complex multi-enzyme assemblies, predominantly found in anaerobic bacteria, which offer substantial potential for second-generation biofuel production through efficient lignocellulosic biomass degradation, thus reducing the need for costly pretreatments. Recent advances in cellulosome research have significantly contributed to developing more efficient consolidated bioprocessing (CBP) platforms for biofuel production. This review highlights the latest progress in designing cellulosomes for optimized enzyme synergy and substrate specificity, as well as advances in engineering cellulosome-producing whole-cell biocatalysts tailored for biofuel applications. Apart from recombinant approaches to the development of CBP platforms, metabolic engineering of cellulosome-producing strains (CPS) and co-culture systems that combine CPS with solvent-producing microbes are also discussed. Current challenges and future directions are outlined that emphasize the role of cellulosomes as powerful tools in advancing the efficiency of lignocellulosic biorefineries.","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"31 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biotechadv.2025.108523","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulosomes are highly efficient, complex multi-enzyme assemblies, predominantly found in anaerobic bacteria, which offer substantial potential for second-generation biofuel production through efficient lignocellulosic biomass degradation, thus reducing the need for costly pretreatments. Recent advances in cellulosome research have significantly contributed to developing more efficient consolidated bioprocessing (CBP) platforms for biofuel production. This review highlights the latest progress in designing cellulosomes for optimized enzyme synergy and substrate specificity, as well as advances in engineering cellulosome-producing whole-cell biocatalysts tailored for biofuel applications. Apart from recombinant approaches to the development of CBP platforms, metabolic engineering of cellulosome-producing strains (CPS) and co-culture systems that combine CPS with solvent-producing microbes are also discussed. Current challenges and future directions are outlined that emphasize the role of cellulosomes as powerful tools in advancing the efficiency of lignocellulosic biorefineries.
期刊介绍:
Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.