{"title":"Flux Fractionalization Transition in Anisotropic S=1 Antiferromagnets and Dimer-Loop Models","authors":"Souvik Kundu, Kedar Damle","doi":"10.1103/physrevx.15.011018","DOIUrl":null,"url":null,"abstract":"We demonstrate that the low-temperature (T</a:mi></a:math>) properties of a class of anisotropic spin <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>S</c:mi><c:mo>=</c:mo><c:mn>1</c:mn></c:math> kagome (planar pyrochlore) antiferromagnets on a field-induced <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mfrac><e:mn>1</e:mn><e:mn>3</e:mn></e:mfrac></e:math>-magnetization (<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mfrac><g:mn>1</g:mn><g:mn>2</g:mn></g:mfrac></g:math>-magnetization) plateau are described by a model of fully packed dimers and loops on the honeycomb (square) lattice, with a temperature-dependent relative fugacity <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>w</i:mi><i:mo stretchy=\"false\">(</i:mo><i:mi>T</i:mi><i:mo stretchy=\"false\">)</i:mo></i:math> for the dimers. The fully packed O(1) loop model (<m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>w</m:mi><m:mo>=</m:mo><m:mn>0</m:mn></m:math>) and the fully packed dimer model (<o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>w</o:mi><o:mo>=</o:mo><o:mi>∞</o:mi></o:math>) limits of this dimer-loop model are found to be separated by a phase transition at a finite and nonzero critical fugacity <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:msub><q:mi>w</q:mi><q:mi>c</q:mi></q:msub></q:math>, with interesting consequences for the spin correlations of the frustrated magnet. The <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>w</s:mi><s:mo>></s:mo><s:msub><s:mi>w</s:mi><s:mi>c</s:mi></s:msub></s:math> phase has short loops and spin correlations dominated by power-law columnar order (with subdominant dipolar correlations), while the <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi>w</u:mi><u:mo><</u:mo><u:msub><u:mi>w</u:mi><u:mi>c</u:mi></u:msub></u:math> phase has dominant dipolar spin correlations and long loops governed by a power-law distribution of loop sizes. Away from <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:msub><w:mi>w</w:mi><w:mi>c</w:mi></w:msub></w:math>, both phases are described by a long-wavelength Gaussian effective action for a scalar height field that represents the coarse-grained electrostatic potential of fluctuating dipoles. The destruction of power-law columnar spin order below <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:msub><y:mi>w</y:mi><y:mi>c</y:mi></y:msub></y:math> is driven by an unusual flux fractionalization mechanism, topological in character but quite distinct from the usual Kosterlitz-Thouless mechanism for such transitions: Fractional electric fluxes which are bound into integer values for w</ab:mi>></ab:mo>w</ab:mi>c</ab:mi></ab:msub></ab:math>, proliferate in the <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:mi>w</cb:mi><cb:mo><</cb:mo><cb:msub><cb:mi>w</cb:mi><cb:mi>c</cb:mi></cb:msub></cb:math> phase and destroy power-law columnar order. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"8 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011018","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate that the low-temperature (T) properties of a class of anisotropic spin S=1 kagome (planar pyrochlore) antiferromagnets on a field-induced 13-magnetization (12-magnetization) plateau are described by a model of fully packed dimers and loops on the honeycomb (square) lattice, with a temperature-dependent relative fugacity w(T) for the dimers. The fully packed O(1) loop model (w=0) and the fully packed dimer model (w=∞) limits of this dimer-loop model are found to be separated by a phase transition at a finite and nonzero critical fugacity wc, with interesting consequences for the spin correlations of the frustrated magnet. The w>wc phase has short loops and spin correlations dominated by power-law columnar order (with subdominant dipolar correlations), while the w<wc phase has dominant dipolar spin correlations and long loops governed by a power-law distribution of loop sizes. Away from wc, both phases are described by a long-wavelength Gaussian effective action for a scalar height field that represents the coarse-grained electrostatic potential of fluctuating dipoles. The destruction of power-law columnar spin order below wc is driven by an unusual flux fractionalization mechanism, topological in character but quite distinct from the usual Kosterlitz-Thouless mechanism for such transitions: Fractional electric fluxes which are bound into integer values for w>wc, proliferate in the w<wc phase and destroy power-law columnar order. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.