Strain Release via Glass Transition Temperature Regulation for Efficient and Stable Perovskite Solar Cells

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-02-01 DOI:10.1002/adma.202417150
Cong Shao, Jiaxin Ma, Guosheng Niu, Zongxiu Nie, Yao Zhao, Fuyi Wang, Jizheng Wang
{"title":"Strain Release via Glass Transition Temperature Regulation for Efficient and Stable Perovskite Solar Cells","authors":"Cong Shao, Jiaxin Ma, Guosheng Niu, Zongxiu Nie, Yao Zhao, Fuyi Wang, Jizheng Wang","doi":"10.1002/adma.202417150","DOIUrl":null,"url":null,"abstract":"Thermally induced tensile strain that remains in perovskite films after annealing is one of the key reasons for diminishing the performance and operational stability of perovskite solar cells (PSCs). Herein, a glass transition temperature (<jats:italic>T</jats:italic><jats:sub>g</jats:sub>) regulation (TR) strategy is developed by introducing two polymerizable monomers, 2‐(N‐3‐Sulfopropyl‐N,<jats:italic>N</jats:italic>‐dimethyl ammonium)ethyl methacrylate (SBMA) and 2‐Hydroxyethyl acrylate (HEA), into the perovskite layer. SBMA and HEA undergo in situ polymerization, which regulates the nucleation and crystal growth of the perovskite film. In addition, adjusting the ratio of SBMA and HEA to lower the <jats:italic>T</jats:italic><jats:sub>g</jats:sub> of the resulting polymer effectively releases the strain in the perovskite film. The modified film exhibits significantly reduced tensile strain, decreased trap density and improved stability. As a result, the optimized PSCs achieve a champion power conversion efficiency (PCE) of 26.15% (certified as 25.59%). Furthermore, the encapsulated device demonstrates prominent enhanced operation stability, maintaining 90.3% of its initial efficiency after 500 h of continuous sunlight exposure.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"39 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202417150","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermally induced tensile strain that remains in perovskite films after annealing is one of the key reasons for diminishing the performance and operational stability of perovskite solar cells (PSCs). Herein, a glass transition temperature (Tg) regulation (TR) strategy is developed by introducing two polymerizable monomers, 2‐(N‐3‐Sulfopropyl‐N,N‐dimethyl ammonium)ethyl methacrylate (SBMA) and 2‐Hydroxyethyl acrylate (HEA), into the perovskite layer. SBMA and HEA undergo in situ polymerization, which regulates the nucleation and crystal growth of the perovskite film. In addition, adjusting the ratio of SBMA and HEA to lower the Tg of the resulting polymer effectively releases the strain in the perovskite film. The modified film exhibits significantly reduced tensile strain, decreased trap density and improved stability. As a result, the optimized PSCs achieve a champion power conversion efficiency (PCE) of 26.15% (certified as 25.59%). Furthermore, the encapsulated device demonstrates prominent enhanced operation stability, maintaining 90.3% of its initial efficiency after 500 h of continuous sunlight exposure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Zinc Single‐Atom Catalysts Encapsulated in Hierarchical Porous Bio‐Carbon Synergistically Enhances Fast Iodine Conversion and Efficient Polyiodide Confinement for Zn‐I2 Batteries Embedding Carbon Nanotubes in Artificial Cells Enhances Probe Transfer Strain Release via Glass Transition Temperature Regulation for Efficient and Stable Perovskite Solar Cells A Multi‐Input Molecular Classifier Based on Digital DNA Strand Displacement for Disease Diagnostics Atomic‐Scale High‐Entropy Design for Superior Capacitive Energy Storage Performance in Lead‐Free Ceramics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1