Sai Puneet Desai, Lei Zhang, Chiara Cappuccino, Andressa V Müller, David C Grills, Dmitry E Polyansky, Renato N Sampaio, Javier J Concepcion
{"title":"Sustained, Selective, and Efficient Photochemical CO<sub>2</sub> Reduction to Formate by Electron-Deficient Ruthenium Polypyridyl Complexes.","authors":"Sai Puneet Desai, Lei Zhang, Chiara Cappuccino, Andressa V Müller, David C Grills, Dmitry E Polyansky, Renato N Sampaio, Javier J Concepcion","doi":"10.1021/jacs.4c14099","DOIUrl":null,"url":null,"abstract":"<p><p>Metal hydrides play a significant role in a variety of reactions, including chemical, electrochemical, and photochemical CO<sub>2</sub> reduction. Molecular metal hydrides have the distinct advantage of allowing tunability of their hydricities by rational ligand modifications, with more electron-rich metal hydrides being in general more hydridic. We report here a new approach to generate highly hydridic metal hydrides of the type [Ru(tpy)(LL)(H)]<sup><i>n</i>+</sup> by introducing electron-withdrawing substituents into the backbone of the bidentate LL ligand. This strategy enables the generation of the metal hydride [Ru(tpy)(LL)(H)]<sup>+</sup> at mild negative potentials and further one-electron reduction to the more hydridic [Ru(tpy)(LL)(H)]<sup>0</sup> at a potential window that is redox silent for the more electron-rich metal hydride analogue [Ru(tpy)(bpy)(H)]<sup>+</sup>. In addition, formate release takes place from the hydride transfer adducts [Ru---HCOO)(tpy)(LL)]<sup>0</sup> rather than from the corresponding <i>formato</i> complexes [Ru(tpy)(LL)(OCHO)]<sup>0</sup>, which would require further reduction to [Ru(tpy)(LL)(OCHO)]<sup>-</sup> as demonstrated by IR spectroelectrochemistry. The parent [Ru(tpy)(LL)(CH<sub>3</sub>CN)]<sup><i>n</i>+</sup> <i>solvento</i> complexes were then tested as catalysts for the reduction of CO<sub>2</sub> to formate in a four-component homogeneous photochemical approach driven by a Ru(II) sensitizer. The results showed selective (>88%) formate production with a record turnover number of ∼50,000 and record turnover frequency of 4.4 s<sup>-1</sup> when compared to other molecular catalysts.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14099","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal hydrides play a significant role in a variety of reactions, including chemical, electrochemical, and photochemical CO2 reduction. Molecular metal hydrides have the distinct advantage of allowing tunability of their hydricities by rational ligand modifications, with more electron-rich metal hydrides being in general more hydridic. We report here a new approach to generate highly hydridic metal hydrides of the type [Ru(tpy)(LL)(H)]n+ by introducing electron-withdrawing substituents into the backbone of the bidentate LL ligand. This strategy enables the generation of the metal hydride [Ru(tpy)(LL)(H)]+ at mild negative potentials and further one-electron reduction to the more hydridic [Ru(tpy)(LL)(H)]0 at a potential window that is redox silent for the more electron-rich metal hydride analogue [Ru(tpy)(bpy)(H)]+. In addition, formate release takes place from the hydride transfer adducts [Ru---HCOO)(tpy)(LL)]0 rather than from the corresponding formato complexes [Ru(tpy)(LL)(OCHO)]0, which would require further reduction to [Ru(tpy)(LL)(OCHO)]- as demonstrated by IR spectroelectrochemistry. The parent [Ru(tpy)(LL)(CH3CN)]n+solvento complexes were then tested as catalysts for the reduction of CO2 to formate in a four-component homogeneous photochemical approach driven by a Ru(II) sensitizer. The results showed selective (>88%) formate production with a record turnover number of ∼50,000 and record turnover frequency of 4.4 s-1 when compared to other molecular catalysts.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.