TSPE: Reconstruction of multi-morphological tumors of NIR-II fluorescence molecular tomography based on positional encoding

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer methods and programs in biomedicine Pub Date : 2025-01-23 DOI:10.1016/j.cmpb.2024.108554
Keyi Han , Chunzhao Li , Anqi Xiao , Yaqi Tian , Jie Tian , Zhenhua Hu
{"title":"TSPE: Reconstruction of multi-morphological tumors of NIR-II fluorescence molecular tomography based on positional encoding","authors":"Keyi Han ,&nbsp;Chunzhao Li ,&nbsp;Anqi Xiao ,&nbsp;Yaqi Tian ,&nbsp;Jie Tian ,&nbsp;Zhenhua Hu","doi":"10.1016/j.cmpb.2024.108554","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><div>Fluorescence molecular tomography (FMT) is a noninvasive and highly sensitive imaging modality, which can display 3D visualization of tumors by reconstructing fluorescence probes’ distribution. However, existing methods mostly ignore positional information, which includes spatial structure information crucial for the reconstruction of light sources. This limits the reconstruction accuracy of light sources with multiple morphologies. Therefore, to our best knowledge, we for the first time integrated positional encoding into the FMT task, enabling the incorporation of high-frequency spatial structure information.</div></div><div><h3>Methods</h3><div>We proposed a three-stage network embedded with a positional encoding module (TSPE) to perform high reconstruction accuracy of tumors with multiple morphologies. Additionally, our study focused on NIR-II which had less severe scattering problems and higher imaging accuracy than NIR-I.</div></div><div><h3>Results</h3><div>The simulation experiments demonstrated that TSPE achieved high reconstruction accuracy in NIR-II FMT, with the barycenter error (BCE) for single-tumor reconstruction reaching 0.18 mm, representing a 14 % reduction compared to other methods. TSPE more accurately distinguished adjacent multi-morphological tumors with a minimal edge-to-edge distance (EED) of 0.3 mm. In vivo experiments also showed that TSPE could achieve more accurate reconstruction of tumors compared with other methods.</div></div><div><h3>Conclusions</h3><div>The proposed method can achieve the best reconstruction performance. It has potential to promote the development of NIR-II FMT and its preclinical application.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"261 ","pages":"Article 108554"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724005479","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Objective

Fluorescence molecular tomography (FMT) is a noninvasive and highly sensitive imaging modality, which can display 3D visualization of tumors by reconstructing fluorescence probes’ distribution. However, existing methods mostly ignore positional information, which includes spatial structure information crucial for the reconstruction of light sources. This limits the reconstruction accuracy of light sources with multiple morphologies. Therefore, to our best knowledge, we for the first time integrated positional encoding into the FMT task, enabling the incorporation of high-frequency spatial structure information.

Methods

We proposed a three-stage network embedded with a positional encoding module (TSPE) to perform high reconstruction accuracy of tumors with multiple morphologies. Additionally, our study focused on NIR-II which had less severe scattering problems and higher imaging accuracy than NIR-I.

Results

The simulation experiments demonstrated that TSPE achieved high reconstruction accuracy in NIR-II FMT, with the barycenter error (BCE) for single-tumor reconstruction reaching 0.18 mm, representing a 14 % reduction compared to other methods. TSPE more accurately distinguished adjacent multi-morphological tumors with a minimal edge-to-edge distance (EED) of 0.3 mm. In vivo experiments also showed that TSPE could achieve more accurate reconstruction of tumors compared with other methods.

Conclusions

The proposed method can achieve the best reconstruction performance. It has potential to promote the development of NIR-II FMT and its preclinical application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
期刊最新文献
Editorial Board A Markov Chain methodology for care pathway mapping using health insurance data, a study case on pediatric TBI Towards clinical prediction with transparency: An explainable AI approach to survival modelling in residential aged care A novel endoscopic posterior cervical decompression and interbody fusion technique: Feasibility and biomechanical analysis Nonlinear dose-response relationship in tDCS-induced brain network synchrony: A resting-state whole-brain model analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1