A deep learning model for assistive decision-making during robot-aided rehabilitation therapies based on therapists' demonstrations.

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of NeuroEngineering and Rehabilitation Pub Date : 2025-01-31 DOI:10.1186/s12984-024-01517-4
David Martínez-Pascual, José M Catalán, Luís D Lledó, Andrea Blanco-Ivorra, Nicolás García-Aracil
{"title":"A deep learning model for assistive decision-making during robot-aided rehabilitation therapies based on therapists' demonstrations.","authors":"David Martínez-Pascual, José M Catalán, Luís D Lledó, Andrea Blanco-Ivorra, Nicolás García-Aracil","doi":"10.1186/s12984-024-01517-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A promising approach to improving motor recovery during rehabilitation is the use of robotic rehabilitation devices. These robotic devices provide tools to monitor the patient's recovery progress while providing highly standardized and intensive therapy. A major challenge in using these robotic devices is the ability to decide when to assist the user. In this context, we propose a Deep Learning-based solution that can learn from a therapist's criteria when a patient needs assistance during robot-aided rehabilitation therapy.</p><p><strong>Methods: </strong>An experimental session was conducted with diverse people who suffered from neurological conditions. The participants used an upper limb rehabilitation robot to play a point-to-point game. A therapist supervised the robot-aided rehabilitation exercises and assisted the participants when considered necessary. This assistance provided by the therapist was detected to label those trajectories that were assisted to train a Deep Learning model that learns from the therapist when to assist. A series of transformations have been applied to the trajectories performed by the participants to generalize the method. Furthermore, the trajectory data was divided into sequences to be introduced to the model and continuously infer whether the user needs assistance. The data acquired during the experimental sessions have been divided into two datasets to train and evaluate the model: intra-participants (80% training, 20% validation) and test participants. The architecture of the Deep Learning model is conceived to perform time-series classification. It consists of diverse one-dimensional convolutional layers, a convolutional attention mechanism, and a Global Average Pooling layer. In addition, the output layer has one neuron with the sigmoid activation function, whose output can be interpreted as a probability of assistance. The model proposed in this study has been evaluated according to different metrics. In addition, the impact of applying fine-tuning to adapt the assistance to each user has been evaluated with the test participants.</p><p><strong>Results: </strong>The proposed model achieved an accuracy of 91.39% and an F1-Score of 75.15% with the validation dataset during a sequence-to-sequence evaluation, surpassing other state-of-the-art architectures. When evaluating the trajectories collected in the test dataset, the method proposed achieved an accuracy of 76.09% and an F1-Score of 74.42% after applying fine-tuning to each participant.</p><p><strong>Conclusions: </strong>The results achieved by our Deep Learning-based method show the feasibility of learning assistance decision-making from experimented therapists. Furthermore, fine-tuning can be applied to personalize the assistance to each user and improve the accuracy of the method presented when deciding whether to assist with the rehabilitation robot.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"18"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786484/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-024-01517-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: A promising approach to improving motor recovery during rehabilitation is the use of robotic rehabilitation devices. These robotic devices provide tools to monitor the patient's recovery progress while providing highly standardized and intensive therapy. A major challenge in using these robotic devices is the ability to decide when to assist the user. In this context, we propose a Deep Learning-based solution that can learn from a therapist's criteria when a patient needs assistance during robot-aided rehabilitation therapy.

Methods: An experimental session was conducted with diverse people who suffered from neurological conditions. The participants used an upper limb rehabilitation robot to play a point-to-point game. A therapist supervised the robot-aided rehabilitation exercises and assisted the participants when considered necessary. This assistance provided by the therapist was detected to label those trajectories that were assisted to train a Deep Learning model that learns from the therapist when to assist. A series of transformations have been applied to the trajectories performed by the participants to generalize the method. Furthermore, the trajectory data was divided into sequences to be introduced to the model and continuously infer whether the user needs assistance. The data acquired during the experimental sessions have been divided into two datasets to train and evaluate the model: intra-participants (80% training, 20% validation) and test participants. The architecture of the Deep Learning model is conceived to perform time-series classification. It consists of diverse one-dimensional convolutional layers, a convolutional attention mechanism, and a Global Average Pooling layer. In addition, the output layer has one neuron with the sigmoid activation function, whose output can be interpreted as a probability of assistance. The model proposed in this study has been evaluated according to different metrics. In addition, the impact of applying fine-tuning to adapt the assistance to each user has been evaluated with the test participants.

Results: The proposed model achieved an accuracy of 91.39% and an F1-Score of 75.15% with the validation dataset during a sequence-to-sequence evaluation, surpassing other state-of-the-art architectures. When evaluating the trajectories collected in the test dataset, the method proposed achieved an accuracy of 76.09% and an F1-Score of 74.42% after applying fine-tuning to each participant.

Conclusions: The results achieved by our Deep Learning-based method show the feasibility of learning assistance decision-making from experimented therapists. Furthermore, fine-tuning can be applied to personalize the assistance to each user and improve the accuracy of the method presented when deciding whether to assist with the rehabilitation robot.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
期刊最新文献
Sway frequencies may predict postural instability in Parkinson's disease: a novel convolutional neural network approach. Lower limb pointing to assess intersegmental dynamics after incomplete spinal cord injury and the associated role of proprioceptive impairments. Correction: Selective nociceptive modulation using a novel prototype of transcutaneous kilohertz high-frequency alternating current stimulation: a crossover double-blind randomized sham-controlled trial. The impact of neck pain and movement performance on the interarticular compressive force of the cervical spine: a cross-sectional study based on OpenSim. Touchscreen-based assessment of upper limb kinematics after stroke: Reliability, validity and sensitivity to motor impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1