Machine learning techniques for independent gait recovery prediction in acute anterior circulation ischemic stroke.

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of NeuroEngineering and Rehabilitation Pub Date : 2025-02-01 DOI:10.1186/s12984-025-01548-5
Jiangping Ma, Yuanjie Xie
{"title":"Machine learning techniques for independent gait recovery prediction in acute anterior circulation ischemic stroke.","authors":"Jiangping Ma, Yuanjie Xie","doi":"10.1186/s12984-025-01548-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop and validate a machine learning-based predictive model for gait recovery in patients with acute anterior circulation ischemic stroke.</p><p><strong>Methods: </strong>Between May and November 2023, 237 patients with acute anterior circulation ischemic stroke were enrolled. Patients were randomly divided into training and validation sets at a 7:3 ratio. Thirty-one medical characteristics were collected, and the Least Absolute Shrinkage and Selection Operator (LASSO) regression was applied to screen predictor variables. Predictive models were developed using the Random Survival Forest (RSF) and COX regression methods. The optimal model was identified based on C-index values. The SHapley Additive exPlanations (SHAP) method was employed to interpret the RSF model globally and locally.</p><p><strong>Results: </strong>Ten predictors were identified through LASSO regression, including age, gender, periventricular white matter hyperintensities (PVWMH), Montreal Cognitive Assessment (MoCA), National Institutes of Health Stroke Scale (NIHSS), enlarged perivascular spaces in basal ganglia (BG-EPVS), lacunes, parietal infarction, basal ganglia infarction, and Timed Up & Go (TUG) test score. The C-index values of the COX regression and RSF models were 0.741 and 0.761 in the training set and 0.705 and 0.725 in the validation set, respectively. SHAP analysis of the RSF model identified BG-EPVS, TUG, MoCA, age, and PVWMH as the top five most influential predictors of gait recovery.</p><p><strong>Conclusion: </strong>The RSF model demonstrated superior performance to the COX regression model in predicting gait recovery, offering a reliable tool for clinical decision-making regarding stroke patients' prognoses.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"19"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786359/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-025-01548-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aimed to develop and validate a machine learning-based predictive model for gait recovery in patients with acute anterior circulation ischemic stroke.

Methods: Between May and November 2023, 237 patients with acute anterior circulation ischemic stroke were enrolled. Patients were randomly divided into training and validation sets at a 7:3 ratio. Thirty-one medical characteristics were collected, and the Least Absolute Shrinkage and Selection Operator (LASSO) regression was applied to screen predictor variables. Predictive models were developed using the Random Survival Forest (RSF) and COX regression methods. The optimal model was identified based on C-index values. The SHapley Additive exPlanations (SHAP) method was employed to interpret the RSF model globally and locally.

Results: Ten predictors were identified through LASSO regression, including age, gender, periventricular white matter hyperintensities (PVWMH), Montreal Cognitive Assessment (MoCA), National Institutes of Health Stroke Scale (NIHSS), enlarged perivascular spaces in basal ganglia (BG-EPVS), lacunes, parietal infarction, basal ganglia infarction, and Timed Up & Go (TUG) test score. The C-index values of the COX regression and RSF models were 0.741 and 0.761 in the training set and 0.705 and 0.725 in the validation set, respectively. SHAP analysis of the RSF model identified BG-EPVS, TUG, MoCA, age, and PVWMH as the top five most influential predictors of gait recovery.

Conclusion: The RSF model demonstrated superior performance to the COX regression model in predicting gait recovery, offering a reliable tool for clinical decision-making regarding stroke patients' prognoses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
期刊最新文献
Sway frequencies may predict postural instability in Parkinson's disease: a novel convolutional neural network approach. Lower limb pointing to assess intersegmental dynamics after incomplete spinal cord injury and the associated role of proprioceptive impairments. Correction: Selective nociceptive modulation using a novel prototype of transcutaneous kilohertz high-frequency alternating current stimulation: a crossover double-blind randomized sham-controlled trial. The impact of neck pain and movement performance on the interarticular compressive force of the cervical spine: a cross-sectional study based on OpenSim. Touchscreen-based assessment of upper limb kinematics after stroke: Reliability, validity and sensitivity to motor impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1