Zhi Chen, Zihan Li, Yu-Hua Huang, Xinzhi Teng, Jiang Zhang, Tianyu Xiong, Yanjing Dong, Liming Song, Ge Ren, Jing Cai
{"title":"Anatomy-wise lung ventilation imaging for precise functional lung avoidance radiation therapy.","authors":"Zhi Chen, Zihan Li, Yu-Hua Huang, Xinzhi Teng, Jiang Zhang, Tianyu Xiong, Yanjing Dong, Liming Song, Ge Ren, Jing Cai","doi":"10.1088/1361-6560/adb123","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>
This study aimed to propose a method for obtaining anatomy-wise lung ventilation image (VIaw) that enables functional assessment of lung parenchyma and tumor-blocked pulmonary segments. The VIaw was used to define multiple functional volumes of the lung and thereby support radiation treatment planning.
Approach:
A super-voxel-based method was employed for functional assessment of lung parenchyma to generate VIsvd. In the VIsvd of the 11 patients with tumor blockage of the airway, the functional value in tumor-blocked segments was set to 0 to generate the VIaw. The lung was divided into regions of high functional volume (HFV), unrecoverable low functional volume, and recoverable low functional volume (rLFV, the region in the tumor-blocked segment with a high function value based on the VIsvd) to design three intensity-modulated photon plans for five patients. These plans were an anatomical-lung-guided plan (aPlan), a functional-lung-guided plan (fPlan), and a recoverable functional-lung-guided plan (rfPlan) where the latter protected both HFV and rLFV.
Main results:
The low functional volume in the reference ventilation images and the tumor-blocked segments had a high overlap similarity coefficient value of 0.90 ± 0.07. The mean Spearman correlation between the VIaw and reference ventilation images was 0.72 ± 0.05 for the patient with tumor blockage of the airway. The V20 and mean dose of rLFV in rfPlan were lower than those in aPlan by 12.1% ± 8.4% and 13.0% ± 6.4%, respectively, and lower than those in fPlan by 14.9% ± 9.8% and 15.9% ± 6.5%, respectively.
Significance:
The VIaw can reach a moderate-strong correlation with reference ventilation images and thus can identify rLFV to support treatment planning to preserve lung function.
.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adb123","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective:
This study aimed to propose a method for obtaining anatomy-wise lung ventilation image (VIaw) that enables functional assessment of lung parenchyma and tumor-blocked pulmonary segments. The VIaw was used to define multiple functional volumes of the lung and thereby support radiation treatment planning.
Approach:
A super-voxel-based method was employed for functional assessment of lung parenchyma to generate VIsvd. In the VIsvd of the 11 patients with tumor blockage of the airway, the functional value in tumor-blocked segments was set to 0 to generate the VIaw. The lung was divided into regions of high functional volume (HFV), unrecoverable low functional volume, and recoverable low functional volume (rLFV, the region in the tumor-blocked segment with a high function value based on the VIsvd) to design three intensity-modulated photon plans for five patients. These plans were an anatomical-lung-guided plan (aPlan), a functional-lung-guided plan (fPlan), and a recoverable functional-lung-guided plan (rfPlan) where the latter protected both HFV and rLFV.
Main results:
The low functional volume in the reference ventilation images and the tumor-blocked segments had a high overlap similarity coefficient value of 0.90 ± 0.07. The mean Spearman correlation between the VIaw and reference ventilation images was 0.72 ± 0.05 for the patient with tumor blockage of the airway. The V20 and mean dose of rLFV in rfPlan were lower than those in aPlan by 12.1% ± 8.4% and 13.0% ± 6.4%, respectively, and lower than those in fPlan by 14.9% ± 9.8% and 15.9% ± 6.5%, respectively.
Significance:
The VIaw can reach a moderate-strong correlation with reference ventilation images and thus can identify rLFV to support treatment planning to preserve lung function.
.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry