IL-10RA promotes lung cancer cell proliferation by increasing fatty acid oxidation via STAT3 signaling pathway

IF 3.3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pulmonary pharmacology & therapeutics Pub Date : 2025-01-30 DOI:10.1016/j.pupt.2025.102344
Wei Du , Yuqing Ouyang , Xiaofan Feng , Chunyan Yu, Haoke Zhang, Siqi Chen, Zixuan Liu, Bo Wang, Xueying Li, Zihe Liu, Weimin Deng
{"title":"IL-10RA promotes lung cancer cell proliferation by increasing fatty acid oxidation via STAT3 signaling pathway","authors":"Wei Du ,&nbsp;Yuqing Ouyang ,&nbsp;Xiaofan Feng ,&nbsp;Chunyan Yu,&nbsp;Haoke Zhang,&nbsp;Siqi Chen,&nbsp;Zixuan Liu,&nbsp;Bo Wang,&nbsp;Xueying Li,&nbsp;Zihe Liu,&nbsp;Weimin Deng","doi":"10.1016/j.pupt.2025.102344","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic reprogramming in tumor cells plays a crucial role in promoting cell proliferation and metastasis, and is currently recognized as a significant marker of tumor progression. Interleukin-10 receptor subunit alpha (IL-10RA), a member of the type II cytokine receptor family, is predominantly expressed on macrophages and T cells and plays a crucial role in regulating immune cell metabolism and immune response. However, its role in the energy metabolic pathways of tumor cells remains unclear. In this study, we found increased expression of IL-10RA in human non-small cell lung cancer (NSCLC), and a correlation between increased IL-10RA expression and tumor stage, tumor size, and short overall survival of patients with NSCLC. IL-10RA overexpression significantly promoted the proliferation of NSCLC cell lines and enhanced glycolysis and fatty acid oxidation (FAO), thereby boosting energy production. Correspondingly, the downregulation of IL-10RA inhibited proliferation, glycolysis, and FAO in NSCLC cell lines. Bioinformatic analyses indicated that IL-10RA upregulates the signal transducer and activator of transcription 3 (STAT3) signaling pathway. STAT3 inhibitor effectively blocked the increase in FAO levels and cell proliferation induced by IL-10RA overexpression. These findings suggest that IL-10RA accelerates NSCLC cell proliferation by increasing FAO levels via the STAT3 pathway, highlighting IL-10RA as a potential therapeutic target for NSCLC.</div></div>","PeriodicalId":20799,"journal":{"name":"Pulmonary pharmacology & therapeutics","volume":"88 ","pages":"Article 102344"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pulmonary pharmacology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109455392500001X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic reprogramming in tumor cells plays a crucial role in promoting cell proliferation and metastasis, and is currently recognized as a significant marker of tumor progression. Interleukin-10 receptor subunit alpha (IL-10RA), a member of the type II cytokine receptor family, is predominantly expressed on macrophages and T cells and plays a crucial role in regulating immune cell metabolism and immune response. However, its role in the energy metabolic pathways of tumor cells remains unclear. In this study, we found increased expression of IL-10RA in human non-small cell lung cancer (NSCLC), and a correlation between increased IL-10RA expression and tumor stage, tumor size, and short overall survival of patients with NSCLC. IL-10RA overexpression significantly promoted the proliferation of NSCLC cell lines and enhanced glycolysis and fatty acid oxidation (FAO), thereby boosting energy production. Correspondingly, the downregulation of IL-10RA inhibited proliferation, glycolysis, and FAO in NSCLC cell lines. Bioinformatic analyses indicated that IL-10RA upregulates the signal transducer and activator of transcription 3 (STAT3) signaling pathway. STAT3 inhibitor effectively blocked the increase in FAO levels and cell proliferation induced by IL-10RA overexpression. These findings suggest that IL-10RA accelerates NSCLC cell proliferation by increasing FAO levels via the STAT3 pathway, highlighting IL-10RA as a potential therapeutic target for NSCLC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
41
审稿时长
42 days
期刊介绍: Pulmonary Pharmacology and Therapeutics (formerly Pulmonary Pharmacology) is concerned with lung pharmacology from molecular to clinical aspects. The subject matter encompasses the major diseases of the lung including asthma, cystic fibrosis, pulmonary circulation, ARDS, carcinoma, bronchitis, emphysema and drug delivery. Laboratory and clinical research on man and animals will be considered including studies related to chemotherapy of cancer, tuberculosis and infection. In addition to original research papers the journal will include review articles and book reviews. Research Areas Include: • All major diseases of the lung • Physiology • Pathology • Drug delivery • Metabolism • Pulmonary Toxicology.
期刊最新文献
IL-10RA promotes lung cancer cell proliferation by increasing fatty acid oxidation via STAT3 signaling pathway Corrigendum to "Clinical efficacy of inhaled corticosteroids in equine asthma: A meta-analysis and number needed to treat" [Pulm. Pharmacol. Therapeut. (88), March 2025, 102342]. Clinical efficacy of inhaled corticosteroids in equine asthma: A meta-analysis and number needed to treat Editorial Board Triple inhaled therapy in asthma: Beliefs, behaviours and doubts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1