Anchana Balakrishnannair Sreekumari, Arul Teen Yesudasan Paulsy
{"title":"Hybrid deep learning based stroke detection using CT images with routing in an IoT environment.","authors":"Anchana Balakrishnannair Sreekumari, Arul Teen Yesudasan Paulsy","doi":"10.1080/0954898X.2025.2452280","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke remains a leading global health concern and early diagnosis and accurate identification of stroke lesions are essential for improving treatment outcomes and reducing long-term disabilities. Computed Tomography (CT) imaging is widely used in clinical settings for diagnosing stroke, assessing lesion size, and determining the severity. However, the accurate segmentation and early detection of stroke lesions in CT images remain challenging. Thus, a Jaccard_Residual SqueezeNet is proposed for predicting stroke from CT images with the integration of the Internet of Things (IoT). The Jaccard_Residual SqueezeNet is the integration of the Jaccard index in Residual SqueezeNet. Firstly, the brain CT image is routed to the Base Station (BS) using the Fractional Jellyfish Search Pelican Optimization Algorithm (FJSPOA) and preprocessing is accomplished by median filter. Then, the skull segmentation is accomplished by ENet and then feature extraction is done. Lastly, Stroke is detected using the Jaccard_Residual SqueezeNet. The values of throughput, energy, distance, trust, and delay determined in terms of routing are 72.172 Mbps, 0.580J, 22.243 m, 0.915, and 0.083S. Also, the accuracy, sensitivity, precision, and F1-score for stroke detection are 0.902, 0.896, 0.916, and 0.906. These findings suggest that Jaccard_Residual SqueezeNet offers a robust and efficient platform for stroke detection.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-40"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2452280","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke remains a leading global health concern and early diagnosis and accurate identification of stroke lesions are essential for improving treatment outcomes and reducing long-term disabilities. Computed Tomography (CT) imaging is widely used in clinical settings for diagnosing stroke, assessing lesion size, and determining the severity. However, the accurate segmentation and early detection of stroke lesions in CT images remain challenging. Thus, a Jaccard_Residual SqueezeNet is proposed for predicting stroke from CT images with the integration of the Internet of Things (IoT). The Jaccard_Residual SqueezeNet is the integration of the Jaccard index in Residual SqueezeNet. Firstly, the brain CT image is routed to the Base Station (BS) using the Fractional Jellyfish Search Pelican Optimization Algorithm (FJSPOA) and preprocessing is accomplished by median filter. Then, the skull segmentation is accomplished by ENet and then feature extraction is done. Lastly, Stroke is detected using the Jaccard_Residual SqueezeNet. The values of throughput, energy, distance, trust, and delay determined in terms of routing are 72.172 Mbps, 0.580J, 22.243 m, 0.915, and 0.083S. Also, the accuracy, sensitivity, precision, and F1-score for stroke detection are 0.902, 0.896, 0.916, and 0.906. These findings suggest that Jaccard_Residual SqueezeNet offers a robust and efficient platform for stroke detection.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.