Constance Creux, Farida Zehraoui, François Radvanyi, Fariza Tahi
{"title":"MMnc: Multi-modal interpretable representation for non-coding RNA classification and class annotation.","authors":"Constance Creux, Farida Zehraoui, François Radvanyi, Fariza Tahi","doi":"10.1093/bioinformatics/btaf051","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>As the biological roles and disease implications of non-coding RNAs continue to emerge, the need to thoroughly characterize previously unexplored non-coding RNAs becomes increasingly urgent. These molecules hold potential as biomarkers and therapeutic targets. However, the vast and complex nature of non-coding RNAs data presents a challenge. We introduce MMnc, an interpretable deep learning approach designed to classify non-coding RNAs into functional groups. MMnc leverages multiple data sources-such as the sequence, secondary structure, and expression-using attention-based multi-modal data integration. This ensures learning of meaningful representations while accounting for missing sources in some samples.</p><p><strong>Results: </strong>Our findings demonstrate that MMnc achieves high classification accuracy across diverse non-coding RNA classes. The method's modular architecture allows for the consideration of multiple types of modalities, whereas other tools only consider one or two at most. MMnc is resilient to missing data, ensuring that all available information is effectively utilized. Importantly, the generated attention scores offer interpretable insights into the underlying patterns of the different non-coding RNA classes, potentially driving future non-coding RNA research and applications.</p><p><strong>Availability: </strong>Data and source code can be found at EvryRNA.ibisc.univ-evry.fr/EvryRNA/MMnc.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: As the biological roles and disease implications of non-coding RNAs continue to emerge, the need to thoroughly characterize previously unexplored non-coding RNAs becomes increasingly urgent. These molecules hold potential as biomarkers and therapeutic targets. However, the vast and complex nature of non-coding RNAs data presents a challenge. We introduce MMnc, an interpretable deep learning approach designed to classify non-coding RNAs into functional groups. MMnc leverages multiple data sources-such as the sequence, secondary structure, and expression-using attention-based multi-modal data integration. This ensures learning of meaningful representations while accounting for missing sources in some samples.
Results: Our findings demonstrate that MMnc achieves high classification accuracy across diverse non-coding RNA classes. The method's modular architecture allows for the consideration of multiple types of modalities, whereas other tools only consider one or two at most. MMnc is resilient to missing data, ensuring that all available information is effectively utilized. Importantly, the generated attention scores offer interpretable insights into the underlying patterns of the different non-coding RNA classes, potentially driving future non-coding RNA research and applications.
Availability: Data and source code can be found at EvryRNA.ibisc.univ-evry.fr/EvryRNA/MMnc.
Supplementary information: Supplementary data are available at Bioinformatics online.